The prevailing formalisms for isolating individual polarization effects from the experimental Mueller matrix
M
can be broadly divided into two categories; decomposition of
M
to derive the individual optical effects and directly associating the individual optical effects to specific elements of
M
(i.e., non-decomposition techniques). Mueller matrix transformation (MMT) and direct interpretation of Mueller matrix (DIMM) are two popular techniques of the latter category. In this study, these two non-decomposition techniques (i.e., MMT and DIMM) are compared in a detailed quantitative analysis comprising of tissues (n = 53) and phantom (n = 45) samples. In particular, two commonly investigated polarimetric variables (i.e., depolarization and retardance) were calculated from the experimentally measured
M
using both the non-decomposition (i.e., MMT and DIMM) techniques. The comparison carried out with scatter plots (integrated with the correlation coefficients), violin plots and Bland and Altman plots revealed better agreement of depolarization-related variables (as compared to the retardance) between the two non-decomposition techniques. The comparative analyses presented here would be beneficial for the interpretation of polarimetric variables and optical characterization of turbid media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.