Osteosarcoma has become one of the most common primary malignant bone tumors in childhood and adult. Numerous studies have demonstrated that aberrant microRNA (miRNA) expression is involved in human disease including cancer. To date, the potential miRNAs regulating osteosarcoma growth and progression are not fully identified yet. Herein, we showed that miR-375 was frequently downregulated in osteosarcoma tissue and cell lines compared to normal human colon tissues. Overexpression of miR-375 resulted in decreased expression of PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) at both mRNA and protein levels. We found that miR-375 overexpression markedly suppressed cell proliferation in vitro. And inhibition of miR-375 promotes osteosarcoma growth. Mechanistic studies showed that PIK3CA was a potential target of miR-375 and it mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. Taken together, our results demonstrate that miR-375 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA in osteosarcoma.
BackgroundX-ray repair cross-complementing group 1 (XRCC1) is one of the DNA repair genes encoding a scaffolding protein that participate in base excision repair (BER) pathway. However, studies on the association between polymorphisms in this gene and glioma have yielded conflicting results. This meta-analysis was performed to derive a more precise estimation between XRCC1 polymorphisms (Arg399Gln, Arg194Trp, and Arg280His) and glioma risk.MethodsData were collected from several electronic databases, with the last search up to November 28, 2012. Meta-analysis was performed by critically reviewing 9 studies for Arg399Gln polymorphism (3146 cases and 4296 controls), 4 studies for Arg194Trp polymorphism (2557 cases and 4347 controls), and 4 studies for Arg280His polymorphism (1936 cases and 2895 controls). All of the statistical analyses were performed using the software programs STATA (version 11.0).ResultsThe combined results showed that Arg399Gln polymorphism was significantly associated with glioma risk (Gln/Gln versus Arg/Arg: OR = 1.52, 95% CI = 1.03–2.23; recessive model: OR = 1.32, 95% CI = 1.01–1.73; additive model: OR = 1.21, 95% CI = 1.00–1.47), whereas Arg194Trp/Arg280His polymorphisms were all not significantly associated with glioma risk. As for ethnicity, Arg399Gln polymorphism was associated with increased risk of glioma among Asians (Gln/Gln versus Arg/Arg: OR = 1.78, 95% CI = 1.29–2.47; Arg/Gln versus Arg/Arg: OR = 1.28, 95% CI = 1.05–1.56; recessive model: OR = 1.59, 95% CI = 1.16–2.17; dominant model: OR = 1.36, 95% CI = 1.13–1.65; additive model: OR = 1.32, 95% CI = 1.15–1.52), but not among Caucasians. Stratified analyses by histological subtype indicated that the Gln allele of Arg399Gln polymorphism showed borderline association with the risk of glioblastoma among Caucasians. However, no evidence was observed in subgroup analyses for Arg194Trp/Arg280His polymorphisms.ConclusionsOur meta-analysis suggested that Arg399Gln polymorphism was associated with increased risk of glioma among Asians and borderline increased risk for glioblastoma among Caucasians, whereas Arg194Trp/Arg280His polymorphisms might have no influence on the susceptibility of glioma in different ethnicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.