Background: Pseudomonas aeruginosa is a clinically important pathogenic microbe in hospitalized patients. It is a major cause of mortality and morbidity having a number of mechanisms that make it antibiotic resistant. Considering the dearth of antimicrobial drugs to treat infection with this pathogen, it has become a necessity to open up new arena for treatment with this organism. Recently, there has been an up rise in the number of multidrug resistant pathogenic strains of Pseudomonas aeruginosa. Objective: Isolation and identification of multidrug resistant Pseudomonas aeruginosa from wound specimens and to evaluate the antibiotic resistant strains of this microbe. Methodology: One hundred and fifty clinical samples of wound were taken from hospitalized patients at Jinnah hospital Lahore during the period of October 2019 to April 2020. In total, twenty (20) isolates of Pseudomonas aeruginosa were identified using the cultural features, morphological characteristics and various biochemical tests plus the Vitek 2 system. Blue/green, brown /blue and yellow/green pigment production showed the presence and growth of Pseudomonas aeruginosa. Results: Percentage of Pseudomonas aeruginosa in females came out to be 15% as compared to 11.42% in males. This was followed by testing susceptibility of isolates of Pseudomonas aeruginosa to various antimicrobial drugs. Piperacillin/tazobactam and meropenem showed the highest efficacy against Pseudomonas aeruginosa. Highest resistance was exhibited against trimethoprim/sulfamethoxazole which was 75%. Conclusion: Most isolates showed multidrug resistance to four or more drugs. Development of multidrug resistance has emerged as a global problem with pathogens commonly causing infections becoming increasingly resistant to antimicrobial agents.
Fungi are eukaryotes with many functions. Earlier, fungi were classified in the plant kingdom but were later classified as a separate kingdom due to their unique cell walls. Fungi are heterotrophs like animals and are more closely related to animals. The perception of fungi is inconspicuous due to their small sizes and their ability to grow symbiotically in plants, animals, other fungi, and parasites. Fungi are used for their nutrition, fermentation potential, and bactericidal potential. However, fungi are also toxic due to certain bioactive compounds known as mycotoxins. Candida and Aspergillus are invasive species that contribute to a high percentage of mycoses in oncological and haematological patients. The mortality rate due to invasive aspergillosis and candidiasis is high, at 4% and 2%, respectively. In the agriculture sector, a significant contributor to damage to crops globally is the invasion of filamentous fungi. Fungi invasion destroys over 125 million tons of wheat, rice, soybeans, potatoes, and maize annually. If prevented, 600 million people may be fed. Therefore, it is vital to consider the dual role of fungi, therapeutic, and pathogenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.