Biodegradable spray-dried chitosan microparticles loaded with clindamycin phosphate (CDP) were formulated to deliver drugs locally into the periodontal pocket. The effects of spray dryer conditions, drug/polymer ratio, and added amounts of glutaraldehyde (GA) solution on the characterization of microparticles were investigated by determining process yield, encapsulation efficiency, particle size and size distribution, surface morphology, drug release, release kinetics, thermal analysis, and antimicrobial efficacy of formulations. Burst release was obtained for all formulations due to the water solubility of the drug, but the increased amount of chitosan decreased the drug release rates. Microparticles with a more wrinkled surface were obtained by increasing the amount of the drug. Incorporation efficiencies higher than 80% were obtained for all preparation conditions. The addition of GA caused higher viscosity of the chitosan solution, leading to larger particles with more spherical and smooth surface characteristics. However, the increased GA amount did not significantly influence the drug release. The data obtained from in vitro release experiments were best fitted to the Weibull and Higuchi models. The amorphous nature of the drug-loaded microparticles was detected by differential scanning calorimetric (DSC) thermographs. A delayed drug release of more than one week could be obtained by loading the drug into the chitosan microparticles. Antimicrobial efficacy studies reflected a positive drug release profile. These results indicate that spray-dried clindamycin-loaded microparticles with sustained antimicrobial efficacy appear to be a promising periodontal therapy for drug delivery into the periodontal pocket.
This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.
Eudragit RS microspheres containing verapamil HCl for oral use were prepared using three different dispersing agents: aluminium tristearate, magnesium stearate and sucrose stearate, by a solvent evaporation method. The effects of the type and concentration of the dispersing agents and the inner phase polymer concentration on the size and T63.2%, (the time at which 63.2% of the drug is released) of microspheres were determined by multiple linear regression analysis. The morphology of microspheres was characterized by scanning electron microscopy. The surface of microspheres prepared with sucrose stearate was smoother and non-porous and the drug release from these microspheres was the fastest. When aluminium tristearate or magnesium stearate were used as dispersing agents, the particle size of microspheres became smaller. Increasing amounts of these two dispersing agents led to the accumulation of their free particles onto the surfaces of the microspheres. The drug release from the microspheres was slower than that of the microspheres from sucrose stearate depending on their hydrophobic structures. According to the results of the multiple linear regression analysis among the dispersing agents used, aluminium tristearate showed the best correlation between the examined input (dispersing agent and polymer concentrations) and output (T63.2%. and particle size) variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.