In this study a PdSn based sensor was developed for the determination of benzoic acid (BA) in foods. A carbon (Vulcan XC‐72R) supported PdSn catalyst was prepared via polyol method and its surface electronic and chemical properties were investigated by advanced surface analytical techniques such as scanning electron microscopy (SEM), X‐ray diffraction spectroscopy (XRD), X‐ray Photoelectron Spectroscopy (XPS), temperature‐programmed reduction with H2 (TPR‐H2) and transmission electron microscopy (TEM). Electrochemical measurements were performed by employing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques on PdSn/GCE/Vulcan XC‐72R electrode. The developed sensor showed a wide linear range up to 10 mM with a 0.77 μM low limit of detection (LOD) as well as high stability. Further experiments were performed on food samples containing BA to achieve real sample measurements. For real sample measurements, PdSn/GCE/Vulcan XC‐72R electrode was used for the determination of BA in different kinds of samples such as mayonnaise, ketchup and carbonated beverages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.