Cyanobactins comprise a widespread group of peptide metabolites produced by cyanobacteria that are often diversified by post‐translational prenylation. Several enzymes have been identified in cyanobactin biosynthetic pathways that carry out chemically diverse prenylation reactions, representing a resource for the discovery of post‐translational alkylating agents. Here, genome mining was used to identify orphan cyanobactin prenyltransferases, leading to the isolation of tolypamide from the freshwater cyanobacterium Tolypothrix sp. The structure of tolypamide was confirmed by spectroscopic methods, degradation, and enzymatic total synthesis. Tolypamide is forward‐prenylated on a threonine residue, representing an unprecedented post‐translational modification. Biochemical characterization of the cognate enzyme TolF revealed a prenyltransferase with strict selectivity for forward O‐prenylation of serine or threonine but with relaxed substrate selectivity for flanking peptide sequences. Since cyanobactin pathways often exhibit exceptionally broad substrate tolerance, these enzymes represent robust tools for synthetic biology.
Background: Glioblastoma multiforme is one of the most heterogenous primary brain tumor with high mortality. Nevertheless, of the current therapeutic approaches, survival rate remains poor with 12 to 15 months following preliminary diagnosis, this warrants the need for effective treatment modality. Wnt/β-catenin pathway is presumably the most noteworthy pathway up-regulated in almost 80% GBM cases contributing to tumor-initiation, progression and survival. Therefore, therapeutic strategies targeting key components of Wnt/β-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate Wnt/β-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemo-resistance in GBM. Objective: In this context, by employing computational tools, an attempt has been carried out to speculate the novel combinations against Wnt/β-catenin signaling pathway. Methods: We have explored the binding interactions of three conventional drugs namely temozolomide, metformin, chloroquine along with three natural compounds viz., epigallocatechin gallate, naringenin and phloroglucinol on the major receptors of Wnt/β-catenin signaling. Results: It was noted that all the experimental compounds possessed profound interaction with the two major receptors of Wnt/β-catenin pathway. Conclusion: To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the afore-mentioned drugs on Wnt/β-catenin signaling in silico and this will putatively open up new avenues for combination therapies in GBM treatment.
Cyanobactins comprise a widespread group of peptide metabolites produced by cyanobacteria that are often diversified by post‐translational prenylation. Several enzymes have been identified in cyanobactin biosynthetic pathways that carry out chemically diverse prenylation reactions, representing a resource for the discovery of post‐translational alkylating agents. Here, genome mining was used to identify orphan cyanobactin prenyltransferases, leading to the isolation of tolypamide from the freshwater cyanobacterium Tolypothrix sp. The structure of tolypamide was confirmed by spectroscopic methods, degradation, and enzymatic total synthesis. Tolypamide is forward‐prenylated on a threonine residue, representing an unprecedented post‐translational modification. Biochemical characterization of the cognate enzyme TolF revealed a prenyltransferase with strict selectivity for forward O‐prenylation of serine or threonine but with relaxed substrate selectivity for flanking peptide sequences. Since cyanobactin pathways often exhibit exceptionally broad substrate tolerance, these enzymes represent robust tools for synthetic biology.
Glioma is the most devastating high-grade tumor of the central nervous system, with dismal prognosis. Existing treatment modality does not provide substantial benefit to patients and demands novel strategies. One of the first-line treatments for glioma, temozolomide, provides marginal benefit to glioma patients. Repurposing of existing non-cancer drugs to treat oncology patients is gaining momentum in recent years. In this study, we investigated the therapeutic benefits of combining three repurposed drugs, namely, metformin (anti-diabetic) and epigallocatechin gallate (green tea-derived antioxidant) together with temozolomide in a glioma-induced xenograft rat model. Our triple-drug combination therapy significantly inhibited tumor growth in vivo and increased the survival rate (50%) of rats when compared with individual or dual treatments. Molecular and cellular analyses revealed that our triple-drug cocktail treatment inhibited glioma tumor growth in rat model through ROS-mediated inactivation of PI3K/AKT/mTOR pathway, arrest of the cell cycle at G1 phase and induction of molecular mechanisms of caspases-dependent apoptosis. In addition, the docking analysis and quantum mechanics studies performed here hypothesize that the effect of triple-drug combination could have been attributed by their difference in molecular interactions, that maybe due to varying electrostatic potential. Thus, repurposing metformin and epigallocatechin gallate and concurrent administration with temozolomide would serve as a prospective therapy in glioma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.