Cyanobactin biosynthetic enzymes have exceptional versatility in the synthesis of natural and unnatural products. Cyanobactins are ribosomally synthesized and posttranslationally modified peptides synthesized by multistep pathways involving a broad suite of enzymes, including heterocyclases/cyclodehydratases, macrocyclases, proteases, prenyltransferases, methyltransferases, and others. Here, we describe the enzymology and structural biology of cyanobactin biosynthetic enzymes, aiming at the twin goals of understanding biochemical mechanisms and biosynthetic plasticity. We highlight how this common suite of enzymes may be utilized to generate a large array or structurally and chemically diverse compounds.
Cyclic peptides are excellent drug candidates, placing macrocyclization reactions at the apex of drug development. PatG and related dual-action proteases from cyanobactin biosynthesis are responsible for cleaving off the C-terminal recognition sequence and macrocyclizing the substrate to provide cyclic peptides. This reaction has found use in the enzymatic synthesis of diverse macrocycles. However, these enzymes function best on substrates that terminate with the non-proteinogenic thiazole/thiazoline residue, complicating synthetic strategies. Here, we biochemically characterize a new class of PatG-like macrocyclases that natively use proline, obviating the necessity of additional chemical or biochemical steps. We experimentally define the biochemical steps involved in synthesizing the widespread prenylagaramide-like natural products, including macrocyclization and prenylation. Using saturation mutagenesis, we show that macrocyclase PagG and prenyltransferase PagF are highly promiscuous, producing a library of more than 100 cyclic peptides and their prenylated derivatives in vitro. By comparing our results to known cyanobactin macrocyclase enzymes, we catalog a series of enzymes that collectively should synthesize most small macrocycles. Collectively, these data reveal that, by selecting the right cyanobactin macrocyclase, a large array of enzymatically synthesized macrocycles are accessible.
Cyanobactins comprise a widespread group of peptide metabolites produced by cyanobacteria that are often diversified by post‐translational prenylation. Several enzymes have been identified in cyanobactin biosynthetic pathways that carry out chemically diverse prenylation reactions, representing a resource for the discovery of post‐translational alkylating agents. Here, genome mining was used to identify orphan cyanobactin prenyltransferases, leading to the isolation of tolypamide from the freshwater cyanobacterium Tolypothrix sp. The structure of tolypamide was confirmed by spectroscopic methods, degradation, and enzymatic total synthesis. Tolypamide is forward‐prenylated on a threonine residue, representing an unprecedented post‐translational modification. Biochemical characterization of the cognate enzyme TolF revealed a prenyltransferase with strict selectivity for forward O‐prenylation of serine or threonine but with relaxed substrate selectivity for flanking peptide sequences. Since cyanobactin pathways often exhibit exceptionally broad substrate tolerance, these enzymes represent robust tools for synthetic biology.
The methylation of peptide backbone amides is a hallmark of bioactive natural products, and it also greatly modifies the pharmacology of synthetic peptides. Usually, bioactive N-methylated peptides are cyclic. However, there is very limited knowledge about how post-translational enzymes can be applied to the synthesis of designed N-methylated peptides or peptide libraries. Here, driven by the established ability of some RiPP enzymes to process diverse substrates, we sought to define catalysts for the in vivo and in vitro macrocyclization of backbone-methylated peptides. We developed efficient methods in which short, synthetic N-methylated peptides could be modified using side chain and mainchain macrocyclases, PsnB and PCY1 from plesiocin and orbitide biosynthetic pathways, respectively. Most significantly, a strategy for PsnB cyclase was designed enabling simple in vitro methods compatible with solid-phase peptide synthesis. We show that cyanobactin N-terminal protease PatA is a broadly useful catalyst that is also compatible with N-methylation chemistry, but that cyanobactin macrocyclase PatG is strongly biased against N-methylated substrates. Finally, we sought to marry these macrocyclase tools with an enzyme that N-methylates its core peptide: OphMA from the omphalotin pathway. However, instead, we reveal some limitations of OphMA and demonstrate that it unexpectedly and extensively modified the enzyme itself in vivo. Together, these results demonstrate proof-of-concept for enzymatic synthesis of N-methylated peptide macrocycles.
Cyclic peptides are excellent drug candidates, placing macrocyclization reactions at the apex of drug development. PatG and related dual-action proteases from cyanobactin biosynthesis are responsible for cleaving off the C-terminal recognition sequence and macrocyclizing the substrate to provide cyclic peptides. This reaction has found use in the enzymatic synthesis of diverse macrocycles. However, these enzymes function best on substrates that terminate with the non-proteinogenic thiazole/thiazoline residue, complicating synthetic strategies. Here, we biochemically characterize a new class of PatG-like macrocyclases that natively use proline, obviating the necessity of additional chemical or biochemical steps. We experimentally define the biochemical steps involved in synthesizing the widespread prenylagaramide-like natural products, including macrocyclization and prenylation. Using saturation mutagenesis, we show that macrocyclase PagG and prenyltransferase PagF are highly promiscuous, producing a library of more than 100 cyclic peptides and their prenylated derivatives in vitro. By comparing our results to known cyanobactin macrocyclase enzymes, we catalog a series of enzymes that collectively should synthesize most small macrocycles. Collectively, these data reveal that, by selecting the right cyanobactin macrocyclase, a large array of enzymatically synthesized macrocycles are accessible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.