It is impossible to ignore the realm of the topics related recycling aluminium scraps. The recycled form of this material can be a good replacement for the primary resources due to the economic and environmental benefits. Numerous investigation must be conducted to establish the mechanical behaviour before the specific applications can be identified. In this research, Taylor Cylinder Impact tests used to investigate anisotropic damage behaviour in recycled aluminium alloy is presented. To be specific, by performing Taylor Cylinder Impact test at velocities ranging from 190m/s to 300m/s, anisotropic and damage characteristics can be observed in the samples as a function of the large stress, strain, and strain-rate gradient. The application of Taylor Cylinder Impact test as a technique to validate both the constitutive and dynamic fracture responses in such materials is also discussed. The structure of recycled aluminium AA6061 including the damage initiation and evolution are observed under optical microscope (OM) and scanning electron microscope (SEM). The results revealed that the damage evolution of the material change with the increasing impact velocity. Further, the digitised footprint analysis showed a pronounced anisotropic characteristic of the recycled aluminium AA6061.
Aluminium alloys have been widely used in many applications, and its usage is increasing yearly due to its distinctive properties. Nevertheless, it required high energy consumption and pollution during the production of primary sources. This leads to the attention in producing secondary sources to substitute the primary aluminium. Recycling of aluminium alloys adopted in automotive structures is a great option to save thousands of energy and prevent tons of CO2 from being released to the atmosphere. Numerous investigations must be conducted to establish the mechanical behaviour before the specific applications can be identified. However, there is a challenge for such recycled aluminium to achieve the same application as the primary sources due to material properties degradation related to damage. It is still an open study area to be explored for a better understanding of the behaviours of recycled aluminium. Thus, in this work, the Taylor Cylinder Impact test is used to investigate anisotropic-damage behaviour of recycled aluminium alloy AA6061 undergoing high-velocity impact from 190m/s to 300 m/s using two length-to-diameter (L/D) ratios. The recovered samples are observed under an optical microscope (OM) and scanning electron microscope (SEM). A strong strain rate dependency can be seen as the damage evolution is increasing as the impact velocity increase. Further, the corresponding digitized footprints analysis exhibit plastic anisotropic and localized plastic strain in such recycled material. This can be clearly observed from the development of a non-symmetrical footprint within the impact surface. This test is the first to explore the deformation behaviour of recycled materials using high-velocity cylinder impact in a high rate of strain deformation regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.