HEV-Ag ELISA assay is a reliable diagnostic test in resource-limited areas. HEV genotype 1 (HEV-1) infections are either self-limited or progress to fulminant hepatic failure (FHF) and death if anti-HEV therapy is delayed. Limited data is available about the diagnostic utility of HEV Ag on HEV-1 infections. Herein wWe aimed to study the kinetics of HEV Ag during HEV-1 infections at different stages, i.e., acute HEV infection, recovery, and progression to FHF. Also, we evaluated the diagnostic utility of this marker to predict the outcomes of HEV-1 infections. Plasma of acute hepatitis E (AHE) patients were assessed for HEV RNA by RT-qPCR, HEV Ag, and anti-HEV IgM by ELISA. The kinetics of HEV Ag was monitored at different time points; acute phase of infection, recovery, FHF stage, and post-recovery. Our results showed that the level of HEV Ag was elevated in AHE patients with a significantly higher level in FHF patients than recovered patients. We identified a plasma HEV Ag threshold that can differentiate between self-limiting infection and FHF progression with 100% sensitivity and 88.89% specificity. HEV Ag and HEV RNA have similar kinetics during the acute phase and self-limiting infection. In the FHF stage, HEV Ag and anti-HEV IgM have similar patterns of kinetics which could be the cause of liver damage. In conclusion, the HEV Ag assay can be used as a biomarker for predicting the consequences of HEV-1 infections which could be diagnostically useful for taking the appropriate measures to reduce the complications, especially for high-risk groups.
The occurrence of tuberculosis (TB) and hepatitis C virus (HCV) infections in the same patient presents a unique clinical challenge. The impact of HCV infection on the immune response to TB remains poorly investigated in TB+/HCV+ patients. This study was conducted to evaluate the impact of HCV on the T-cell-mediated immune response to TB in coinfected patients. Sixty-four patients with active TB infections were screened for coinfection with HCV. The expression of immune activation markers IFN-γ, CD38, and HLA-DR on TB-specific CD4+ T cells was evaluated by flow cytometry in TB-monoinfected patients, TB/HCV-coinfected patients, and healthy controls. IL-2, IL-4, IFN-γ, TNF-α, and IL-10 levels were measured using ELISA. The end-of-treatment response to anti-TB therapy was recorded for both patient groups. Significantly lower levels of CD4+IFN-γ+CD38+ and CD4+IFN-γ+HLA-DR+ T cells were detected in TB/HCV-coinfected patients compared to TB monoinfected patients and controls. TB+/HCV+-coinfected patients showed higher serum levels of IL-10. The baseline frequencies of TB-specific activated T-cell subsets did not predict the response to antituberculous therapy in TB+/HCV+ patients. We concluded that different subsets of TB-specific CD4+ T cells in TB/HCV-infected individuals are partially impaired in early-stage HCV infection. This was combined with increased serum IL-10 level. Such immune modulations may represent a powerful risk factor for disease progression in patients with HCV/TB coinfection.
Background and Objectives: Clostridium difficile infection (CDI) has become a significant healthcare-associated infection throughout the world and is particularly important in developing countries. This study aimed to investigate clinical characterization and risk factors related to toxigenic C. difficile infection in adult and pediatric patients, antimicrobial susceptibility pattern. Also, to evaluate different diagnostic methods for rapid detection of C. difficile associated diarrhea (CDAD) in Egypt. Materials and Methods: Stool samples were collected from 95 pediatric patients and 37 adult patients suffering from antibiotic associated diarrhea and were subjected to direct toxin immunoassay and culture on cycloserine/cefoxitin/fructose agar. The presence of tcdA and tcdB genes was tested by PCR. Results: Toxigenic C. difficile was isolated from pediatric and adult patients at a rate of 17.89% (17/95) and 27% (10/37) respectively. The sensitivity and specificity of direct PCR from stool are (100%, 100% and 82.4%, 100%) in adult and pediatric samples respectively. The susceptibility of C. difficile to vancomycin and metronidazole were found to be 66.7% and 48.2% respectively. Conclusion: Diabetes mellitus, prior antibiotic treatment, hematological malignancy on chemotherapy, malnutrition, neutropenia and Ryle feeding are risk factors for development of CDAD. Tight restriction of unnecessary antibiotic uses is necessary in our locality. Direct detection of toxin genes in stool by PCR is sensitive and specific method for early detection of C. difficile.
Background and Objectives Candida albicans is a significant source of morbidity and mortality for patients with acute myeloid leukemia (AML). Prolonged use of fluconazole as empirical antifungal prophylaxis in AML patients leads to overexpression of efflux pump genes that resulted in the emergence of azole-resistant species. Consequently, the introduction of a new strategy to improve the management of C. albicans infections is an urgent need. Nonsteroidal anti-inflammatory drug (NSAID) ketorolac is associated with a reduction in cancer relapses. The present study was performed to investigate the use of ketorolac-fluconazole combination to reverse fluconazole resistance in C. albicans isolated from AML patients on induction chemotherapy. Patients and Methods One hundred and seventy AML patients were evaluated. Fifty C. albicans were isolated and subjected to disc diffusion assay and broth microdilution for fluconazole alone and combined with different concentrations of ketorolac. Efflux pump gene ( CDR1, CDR2 , and MDR1 ) expressions were quantified by real-time PCR. Results The tested ketorolac acted synergistically with fluconazole against resistant C. albicans with the minimum inhibitory concentration (MIC) of fluconazole decreased from >160 μg/mL to 0.3–1.25 μg/mL in (93.8%) of resistant isolates with fractional inhibitory concentration index (FICI) value of 0.25. The majority of the resistant isolates overexpressed CDR1 (71.1%) and MDR1 (60%). Conclusion Ketorolac-fluconazole in vitro combination would be a promising strategy for further clinical in vivo trials to overcome fluconazole resistance in AML patients on induction chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.