Objective: Tween 80 has been used as a solvent for the extraction of phenolic compounds because this surfactant has both hydrophilic and hydrophobicproperties. Solid lipid nanoparticles (SLNs) have been developed to improve penetration through the skin layer. We investigated the efficacy of usingthe microwave-assisted micellar extraction (MAME) approach for extracting oxyresveratrol from Morus alba roots and also to develop an SLN lotion.Methods: The M. alba roots were extracted with Tween 80 in a microwave for 18 min, and the extract was used to develop SLN with differentconcentrations of glyceryl monostearate. The SLNs from M. alba root extracts were prepared by a high-speed homogenization technique (25,000 rpmfor 15 min). The SLNs produced were characterized as per particle size, polydispersity index (PDI), and zeta potential. The SLNs with the bestcharacteristics were used to formulate a lotion using a high-pressure homogenizer.Results: Extraction using MAME showed improved extraction efficiency. The oxyresveratrol concentration from the extract was 2.77%. The SLN with2.5% glyceryl monostearate showed the optimum result, with a particle size of 130.20 nm, a PDI of 0.278, and a zeta potential of −21.8 mV. The SLNlotion exhibited a particle size of 285.9 nm and a PDI of 0.360. The SLN lotion also had good penetration, with a flux of 4.70 μg cm−2/h.Conclusion: MAME is an efficient method for extracting oxyresveratrol from M. alba roots. The SLN with 2.5% glyceryl monostearate exhibited theoptimum characteristics, and the SLN lotion showed good characteristics, including skin penetration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.