This study investigates the individual and combined impacts of El Niño and the positive Indian Ocean Dipole (IOD) on the Southeast Asia (SEA) rainfall variability. Using composite and partial correlation techniques, it is shown that both inter-annual events have individually distinct impacts on the SEA rainfall anomaly distribution. The results showed that the impacts of the co-occurrence of El Niño and IOD events are significant compared to the individual effects of pure El Niño or pure IOD. During June-July-August and September-October-November, the individual impacts of the pure El Niño and IOD events are similar but less significant. Both events caused negative impacts over the southern part of SEA during June-July-August (JJA) and propagated northeastward/eastward during September-October-November (SON). Thus, there are significant negative impacts over the southern part of SEA during the co-occurrence of both events. The differential impacts on the anomalous rainfall patterns are due to the changes in the sea surface temperature (SST) surrounding the region. Additionally, the differences are also related to the anomalous regional atmospheric circulations that interact with the regional SST. The anomalous Walker circulation that connects the Indian Ocean and tropical Pacific Ocean also plays a significant role in determining the regional anomalous rainfall patterns.
In this study, five simulations were conducted using the weather research and forecasting (WRF) model with different cumulus parameterizations schemes (CPSs) for the period from 2013 until 2018. A one-year simulation of 2013 with three different horizontal resolutions of 25, 5, and 1.6 km was also performed. The CPSs used were Kain–Fritsch (KF), Grell–Devenyi (GR), Betts–Miller–Janjic (BM), and a non-parameterized scheme (NC). In assessments of model resolutions, both the 25 and 5 km resolutions depicted a strong negative bias in the northeastern part of Peninsular Malaysia during December–January–February (DJF), with marginal differences between the two simulations. Among all 5 km experiments, the best performing scheme was the BM scheme for almost all seasons. Furthermore, the 5 km simulation did not exhibit significant differences relative to the 25 km of the diurnal cycle. The 1.6 km simulation showed significant added value as it was the only simulation that was able to simulate the high precipitation intensity in the morning and a precipitation peak during the evening. The 1.6 km resolution was also the only resolution capable of picking up the precipitation signals in the R4 region (South Peninsular Malaysia) compared to the other two resolutions. While both CPSs and resolutions are important for accurate predictions, the role of CPSs became less significant in a higher resolution simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.