Antimony selenide (Sb2Se3) is emerging as a promising photovoltaic material owing to its excellent photoelectric property. However, the low carrier transport efficiency, and detrimental surface oxidation of the Sb2Se3 thin film greatly influenced the further improvement of the device efficiency. In this study, the introduction of tellurium (Te) can induce the benign growth orientation and the desirable Sb/Se atomic ratio in the Te-Sb2Se3 thin film. Under various characterizations, it found that the Te-doping tended to form Sb2Te3-doped Sb2Se3, instead of alloy-type Sb2(Se,Te)3. After Te doping, the mitigation of surface oxidation has been confirmed by the Raman spectra. High-quality Te-Sb2Se3 thin films with preferred [hk1] orientation, large grain size, and low defect density can be successfully prepared. Consequently, a 7.61% efficiency Sb2Se3 solar cell has been achieved with a VOC of 474 mV, a JSC of 25.88 mA/cm2, and an FF of 64.09%. This work can provide an effective strategy for optimizing the physical properties of the Sb2Se3 absorber, and therefore the further efficiency improvement of the Sb2Se3 solar cells.
Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth’s rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm−2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.