Single-atom introduced carbon nanomaterials show favorable oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) performance for renewable energy applications. Nevertheless, the electronicstructure regulation by decorating heterogeneous single-metal-atoms and the engineering of a single-atom active-sites' microenvironment need to be optimized simultaneously, which is challenging. Herein, we develop an atomic-interfacial-regulation approach to fabricate dual single Fe/Co atoms synchronized with both nitrogen/sulfur atoms on defective/graphitic/ porous carbon nanosheets (Fe,Co/DSA-NSC). The unsymmetrically organized N and S coordinated Fe/Co bridged atomic-sites [Fe-(N 2 S)/ Co-(N 2 S) moiety] are established to prompt charge-transfer, lowering the energy barrier of oxygenated reaction-intermediates and leading to boost the reaction-kinetics. As estimated, the Fe,Co/DSA-NSC exhibits an improved ORR/OER activity with higher half-wave potential and lower overpotential (E 1/2 = 879 mV and η 10 = 210 mV, respectively) and also good cycling stability toward zinc-air batteries. This discovery hence provides a widespread scheme for the synergistic-principles of dual-single-atom catalysts and controlled regulation of an active-sites' microenvironment toward energy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.