In this paper, the systematic design of a multiple antenna system for 5G smartphone operating at 3.5 GHz for multiple-input multiple-output (MIMO) operation in smartphones is proposed. The smartphone is preferred to be lightweight, thin, and attractive, and as a result metal casings have become popular. Using conventional antennas, such as a patch antenna, Inverted-F antennas, or monopole, in proximity to metal casing leads to decreasing its total efficiency and bandwidth. Therefore, a slot antenna embedded in the metal casing can be helpful, with good performance regarding bandwidth and total efficiency. The proposed multiple antenna system adopted the unit open-end slot antenna fed by Inverted-L microstrip with tuning stub. The measured S-parameters results agree fairly with the numerical results. It attains 200 MHz bandwidth at 3.5 GHz with ports isolation of (≤−13 dB) for any two antennas of the system. The influence of the customer’s hand for the proposed multiple antenna system is also considered, and the MIMO channel capacity is computed. The maximum achievable MIMO channel capacity based on the measured result is 31.25 bps/Hz and is about 2.7 times of 2 × 2 MIMO operation.
Nowadays, more attention has been given into ultrawideband by dint of its extraordinary features over narrowband communication systems. This study presents a novel compact with tilted square frames shape antenna with partial ground plane. The proposed antenna is printed on commercially available Fr4 substrate with relative thickness of 1.6 mm. The antenna has compact dimensions of 14 × 18 mm2 with bandwidth ranging from 3.3 to 11.5 GHz. The peak gain obtained is 1.4 dBi with omnidirectional radiation characteristics throughout the entire bandwidth. The proposed antenna is fabricated, and the developed prototype measured results, which well agree with simulated results. With the performance parameters obtained and the well agreed measured results, the proposed antenna is well suitable for Wi-Fi, ISM, and UWB applications.
In this work, a low-cost, deployable, integratable, and easy-to-fabricate multiple-input multiple-output (MIMO) Kirigami antenna is proposed for sub-6 GHz applications. The proposed MIMO antenna is inspired by Kirigami art, which consists of four radiating and parasitic elements. The radiating and parasitic elements are composed of a rectangular stub. These elements are placed in such a way that they can provide polarization diversity. The proposed MIMO antenna is designed and fabricated using a soft printed board material called flexible copper-clad laminate (FCCL). It is observed from the results that the proposed MIMO antenna resonates in the 2.5 GHz frequency band, with a 10 dB reflection coefficient bandwidth of 860 MHz ranging from 2.19 to 3.05 GHz. It is worthwhile to mention that the isolation between adjacent radiating elements is higher than 15 dB. In addition, the peak realized gain of the MIMO antenna is around 11 dBi, and the total efficiency is more than 90% within the band of interest. Moreover, the envelope correlation coefficient (ECC) is noted to be less than 0.003, and the channel capacity is ≥17 bps/Hz. To verify the simulated results, a prototype was fabricated, and excellent agreement between the measured and computed results was observed. By observing the performance attributes of the proposed design, it can be said that there are many applications in which this antenna can be adopted. Because of its low profile, it can be used in 5G small-cell mobile MIMO base stations, autonomous light mobility vehicles, and other applications.
In this article, a compact four-port MIMO antenna system resonating from 4.7–5.1 GHz on −6 dB criteria is discussed. The proposed antennas are arranged in a perpendicular manner providing diversity with good isolation characteristics. The proposed antenna was fabricated and designed on a commercially available low-cost FR-4 substrate with a relative permittivity of 4.4. The total size of the antenna is 40 × 40 mm2, and a minimum isolation of 25 dB was observed at most nearby resonating elements. The proposed antenna was fabricated and tested at an in-house facility, and the measured results agree well with the simulations. The MIMO antenna characteristics, such as the envelope correlation coefficient (ECC) among any two radiating elements, have been found to be less than 0.1, and the diversity gain (DG) value evaluated showed that the proposed antenna is well designed. Furthermore, the SAR analysis showed that the desired antenna system is safe for users, with a value of 0.94 W/Kg. The channel capacity (cc) was found to be 18.7 bps/Hz, approximately 2.7 times more than SISO systems. Through its robust and reliable performance and its peak gain of 2.8 dBi, the proposed compact antenna is a good candidate for future 5G devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.