Despite significant improvements over the last few years, cloud-based healthcare applications continue to suffer from poor adoption due to their limitations in meeting stringent security, privacy, and quality of service requirements (such as low latency). The edge computing trend, along with techniques for distributed machine learning such as federated learning, has gained popularity as a viable solution in such settings. In this paper, we leverage the capabilities of edge computing in medicine by evaluating the potential of intelligent processing of clinical data at the edge. We utilized the emerging concept of clustered federated learning (CFL) for an automatic COVID-19 diagnosis. We evaluate the performance of the proposed framework under different experimental setups on two benchmark datasets. Promising results are obtained on both datasets resulting in comparable results against the central baseline where the specialized models (i.e., each on a specific image modality) are trained with central data, and improvements of 16% and 11% in overall F1-Scores have been achieved over the trained model trained (using multi-modal COVID-19 data) in the CFL setup on X-ray and Ultrasound datasets, respectively. We also discussed the associated challenges, technologies, and techniques available for deploying ML at the edge in such privacy and delay-sensitive applications.INDEX TERMS Distributed computing, machine learning, smart healthcare.
Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.
Formal Method (FM) is an emergent feature that uses mathematical notations to mark accurate and explicit specifications that error and discrepancies are identified during early phases of the software development process. By using the Z specification, system specification, design and verification can improve the quality effectively. In this paper, we present the formal specification for the e-Health system by using Z schema. This paper will be motivation to Formal Methods that FM not only beneficial for mission critical systems but also in the commercial and business oriented applications, because the development time, verification and maintenance cost will drastically reduce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.