Silica fume (SF) is a mineral additive that is widely used in the construction industry when producing sustainable concrete. The integration of SF in concrete as a partial replacement for cement has several evident benefits, including reduced CO2 emissions, cost-effective concrete, increased durability, and mechanical qualities. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and cracking tensile strengths of silica fume concrete. Multilayer perceptron neural networks (MLPNN), adaptive neural fuzzy detection systems (ANFIS), and genetic programming are all used (GEP). From accessible literature data, a broad and accurate database of 283 compressive strengths and 149 split tensile strengths was created. The six most significant input parameters were cement, fine aggregate, coarse aggregate, water, superplasticizer, and silica fume. Different statistical measures were used to evaluate models, including mean absolute error, root mean square error, root mean squared log error and the coefficient of determination. Both machine learning models, MLPNN and ANFIS, produced acceptable results with high prediction accuracy. Statistical analysis revealed that the ANFIS model outperformed the MLPNN model in terms of compressive and tensile strength prediction. The GEP models outperformed all other models. The predicted values for compressive strength and splitting tensile strength for GEP models were consistent with experimental values, with an R2 value of 0.97 for compressive strength and 0.93 for splitting tensile strength. Furthermore, sensitivity tests revealed that cement and water are the determining parameters in the growth of compressive strength but have the least effect on splitting tensile strength. Cross-validation was used to avoid overfitting and to confirm the output of the generalized modelling technique. GEP develops an empirical expression for each outcome to forecast future databases’ features to promote the usage of green concrete.
The construction sector exerts an exceptional impact on economic development all over the world. Adequate buildings and infrastructures made by the construction sector ensure that a country reaches certain targets like social development, industrialization, freight transportation, sustainable development, and urbanization. This study aims to determine the construction sector’s connectivity with other sectors through complex linkages that contribute immensely to the economy and gross domestic product (GDP). The data were collected from the Department of Statistics Malaysia and the World Bank from the year 1970 to 2019, and the Pearson correlation test, the cointegration test, and the Granger causality test were conducted. The vector error correction model (VECM) was created for short-term and long-term equilibrium analysis and impulse response function (IRF) was performed to study construction industry behavior. Afterwards, the forecasting was done for the year 2020 to 2050 of the Malaysian economy and GDP for the required sectors. It was revealed that some sectors, such as agriculture and services, have forward linkages while other sectors, such as manufacturing and mining, are independent of construction sector causality, which signifies the behavior of the contributing sectors when a recession occurs, hence generating significant revenue. The Malaysian economy is moving towards sustainable production with more emphasis on the construction sector. The outcome can be used as a benchmark by other countries to achieve sustainable development. The significance of this study is its usefulness for experts all over the world in terms of allocating resources to make the construction sector a sustainable sector after receiving a shock. A sustainable conceptual framework has been suggested for global application that shows the factors involved in the growth of the construction industry to ensure its sustainable development with time.
Silica fume (SF) is a frequently used mineral admixture in producing sustainable concrete in the construction sector. Incorporating SF as a partial substitution of cement in concrete has obvious advantages, including reduced CO2 emission, cost-effective concrete, enhanced durability, and mechanical properties. Due to ever-increasing environmental concerns, the development of predictive machine learning (ML) models requires time. Therefore, the present study focuses on developing modeling techniques in predicting the compressive strength of silica fume concrete. The employed techniques include decision tree (DT) and support vector machine (SVM). An extensive and reliable database of 283 compressive strengths was established from the available literature information. The six most influential factors, i.e., cement, fine aggregate, coarse aggregate, water, superplasticizer, and silica fume, were considered as significant input parameters. The evaluation of models was performed by different statistical parameters, such as mean absolute error (MAE), root mean squared error (RMSE), root mean squared log error (RMSLE), and coefficient of determination (R2). Individual and ensemble models of DT and SVM showed satisfactory results with high prediction accuracy. Statistical analyses indicated that DT models bested SVM for predicting compressive strength. Ensemble modeling showed an enhancement of 11 percent and 1.5 percent for DT and SVM compressive strength models, respectively, as depicted by statistical parameters. Moreover, sensitivity analyses showed that cement and water are the governing parameters in developing compressive strength. A cross-validation technique was used to avoid overfitting issues and confirm the generalized modeling output. ML algorithms are used to predict SFC compressive strength to promote the use of green concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.