Community detection in microblogging environment has become an important tool to understand the emerging events. Most existing community detection methods only use network topology of users to identify optimal communities. These methods ignore the structural information of the posts and the semantic information of users' interests. To overcome these challenges, this paper uses User Interest Community Detection model to analyze text streams from microblogging sites for detecting users' interest communities. We propose HITS Latent Dirichlet Allocation model based on modified Hypertext Induced Topic Search and Latent Dirichlet Allocation to distil emerging interests and high-influence users by reducing negative impact of non-related users and its interests. Moreover, we propose HITS Label Propagation Algorithm method based on Label Propagation Algorithm and Collaborative Filtering to segregate the community interests of users more accurately and efficiently. Our experimental results demonstrate the effectiveness of our model on users' interest community detection and in addressing the data sparsity problem of the posts.
The new paradigm in engineering education demands hands-on training of the students using technology oriented projects. The roots of this approach can be traced back to the work of Seymour Papert in 1970s when he built a programmable turtle with a reflective light sensor (Papert, 1971). His ideas ultimately lead to the educational theory of constructionism (Papert, 1986 and Harel & Papert, 1991). According to this theory, students learn very effectively when they are involved in the creation of an external object that lives in the real world. Learners use this object to think with, and to relate ideas of, their subject of inquiry (Bourgoin, 1990). From an educational point of view, the theory of Papert can be linked to the constructivist theory of Jean Piaget (Paiget, 1972). According to this theory, learning comes from an active process of knowledge construction. This knowledge can be gained through real life experiences and linked to a learners’ previous knowledge. The concept of turtle was evolved further at MIT and became the famous Programmable Brick by Fred Martin who also developed new learning environments and methodologies based on this concept (Martin, 1988 and Martin 1994). The unusual idea put forward by the Brick, at least at the time of its invention, was the incorporation of the “design” work into the learning process. Students were not only users in this case, but were actively involved in the design process, while solving their problems (Martin, 1996a). The ‘Brick’ was later adopted and incorporated by the LEGO MINDSTORMS kit (RCX in 1998 and NXT made available in 2006). The use of the name “MINDSTROMS” can also be traced back to the book by Seymour Papert (Papert 1980). Versions of these Bricks for economically challenged communities have also been proposed recently (Sipitakiat, et al, 2004). The active learning methodology (Harmin and Toth, 2006) uses this philosophy of involving students in their own learning through class discussions and group problem solving and proves to be effective at least in certain cases. Robots have become a major player in this area and have been employed in improving the quality and level of student learning, ranging from primary schools to graduate level. As pointed out by Resnick and Martin (Resnick and Martin, 1990), “Creatures built from Electronic Bricks fall on the fuzzy boundary between animals and machines, forcing students to come to terms with how machines can be like animals, and vice versa”. In engineering courses incorporating connectionism approach, the students are asked to design and program a robot for a specific task. They also work in small teams and help and learn from each other. However it is important to know what is currently available to an educator so that he/she can develop the required skills, abilities, attitudes and values in students. In this article we identify some of the major research centres working in the area of education utilizing robots and discuss some of the robotic kits now available to educators. We also comment on the famous robotic competitions worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.