The medical data are often filed for each patient in clinical studies in order to inform decision-making. Usually, medical data are generally skewed to the right, and skewed distributions can be the appropriate candidates in making inferences using Bayesian framework. Furthermore, the Bayesian estimators of skewed distribution can be used to tackle the problem of decision-making in medicine and health management under uncertainty. For medical diagnosis, physician can use the Bayesian estimators to quantify the effects of the evidence in increasing the probability that the patient has the particular disease considering the prior information. The present study focuses the development of Bayesian estimators for three-parameter Frechet distribution using noninformative prior and gamma prior under LINEX (linear exponential) and general entropy (GE) loss functions. Since the Bayesian estimators cannot be expressed in closed forms, approximate Bayesian estimates are discussed via Lindley’s approximation. These results are compared with their maximum likelihood counterpart using Monte Carlo simulations. Our results indicate that Bayesian estimators under general entropy loss function with noninformative prior (BGENP) provide the smallest mean square error for all sample sizes and different values of parameters. Furthermore, a data set about the survival times of a group of patients suffering from head and neck cancer is analyzed for illustration purposes.
Mobile technology is very fast growing and incredible, yet there are not much technology development and improvement for Deafmute peoples. Existing mobile applications use sign language as the only option for communication with them. Before our article, no such application (app) that uses the disrupted speech of Deaf-mutes for the purpose of social connectivity exists in the mobile market. The proposed application, named as vocalizer to mute (V2M), uses automatic speech recognition (ASR) methodology to recognize the speech of Deaf-mute and convert it into a recognizable form of speech for a normal person. In this work mel frequency cepstral coefficients (MFCC) based features are extracted for each training and testing sample of Deaf-mute speech. The hidden Markov model toolkit (HTK) is used for the process of speech recognition. The application is also integrated with a 3D avatar for providing visualization support. The avatar is responsible for performing the sign language on behalf of a person with no awareness of Deaf-mute culture. The prototype application was piloted in social welfare institute for Deaf-mute children. Participants were 15 children aged between 7 and 13 years. The experimental results show the accuracy of the proposed application as 97.9%. The quantitative and qualitative analysis of results also revealed that face-to-face socialization of Deaf-mute is improved by the intervention of mobile technology. The participants also suggested that the proposed mobile application can act as a voice for them and they can socialize with friends and family by using this app.
The storage size of the image and video repositories are growing day by day due to the extensive use of digital image acquisition devices. The position of an object within an image is obtained by analyzing the content-based properties like shape, texture, and color, while compositional properties present the image layout and include the photographic rule of composition. The high-quality images are captured on the basis of the rule of thirds that divide each image into nine square areas. According to this rule, salient objects of an image are placed on the intersection points or along the imagery lines of the grid to capture the position of the salient objects. To improve image retrieval performance, visual-bag-of-words (VBoW) framework-based image representation is widely used nowadays. According to this framework, the spatial relationship between salient objects of an image is lost due to the formation of a global histogram of the image. This article presents a novel adapted triangular area-based technique, which computes local intensity order pattern (LIOP) features, weighted soft codebooks, and triangular histograms from the four triangular areas of each image. The proposed technique adds the spatial contents from four adapted triangular areas of each image to the inverted index of the VBoW framework, solve overfitting problem of the larger sizes of the codebook, and overwhelmed the problem of the semantic gap. The experimental results and statistical analysis performed on five image collections show an encouraging robustness of the proposed technique that is compared with the recent CBIR techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.