This paper is devoted to investigation of the fractional order fuzzy dynamical system, in our case, modeling the recent pandemic due to corona virus (COVID-19). The considered model is analyzed for exactness and uniqueness of solution by using fixed point theory approach. We have also provided the numerical solution of the nonlinear dynamical system with the help of some iterative method applying Caputo as well as Attangana-Baleanu and Caputo fractional type derivative. Also, random COVID-19 model described by a system of random differential equations was presented. At the end we have given some numerical approximation to illustrate the proposed method by applying different fractional values corresponding to uncertainty.
This manuscript addressing the dynamics of fractal-fractional type modified SEIR model under Atangana-Baleanu Caputo (ABC) derivative of fractional order
and fractal dimension
for the available data in Pakistan. The proposed model has been investigated for qualitative analysis by applying the theory of non-linear functional analysis along with fixed point theory. The fractional Adams–bashforth iterative techniques have been applied for the numerical solution of the said model. The Ulam-Hyers (UH) stability techniques have been derived for the stability of the considered model. The simulation of all compartments has been drawn against the available data of covid-19 in Pakistan. The whole study of this manuscript illustrates that control of the effective transmission rate is necessary for stoping the transmission of the outbreak. This means that everyone in the society must change their behavior towards self-protection by keeping most of the precautionary measures sufficient for controlling covid-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.