Unmanned aerial vehicles (UAVs), commonly referred to as drones, are one of the most dynamic and multidimensional emerging technologies of the modern era. This technology has recently found multiple potential applications within the transportation field, ranging from traffic surveillance applications to traffic network analysis. To conduct a UAV-based traffic study, extremely diligent planning and execution are required followed by an optimal data analysis and interpretation procedure. In this study, however, the main focus was on the processing and analysis of UAV-acquired traffic footage. A detailed methodological framework for automated UAV video processing is proposed to extract the trajectories of multiple vehicles at a particular road segment. Such trajectories can be used either to extract various traffic parameters or to analyze traffic safety situations. The proposed framework, which provides comprehensive guidelines for an efficient processing and analysis of a UAV-based traffic study, comprises five components: preprocessing, stabilization, georegistration, vehicle detection and tracking, and trajectory management. Until recently, most traffic-focused UAV studies have employed either manual or semiautomatic processing techniques. In contrast, this paper presents an in-depth description of the proposed automated framework followed by a description of a field experiment conducted in the city of Sint-Truiden, Belgium. Future research will mainly focus on the extension of the applications of the proposed framework in the context of UAV-based traffic monitoring and analysis.
Owing to their dynamic and multidisciplinary characteristics, Unmanned Aerial Vehicles (UAVs), or drones, have become increasingly popular. However, the civil applications of this technology, particularly for traffic data collection and analysis, still need to be thoroughly explored. For this purpose, the authors previously proposed a detailed methodological framework for the automated UAV video processing in order to extract multi-vehicle trajectories at a particular road segment. In this paper, however, the main emphasis is on the comprehensive analysis of vehicle trajectories extracted via a UAV-based video processing framework. An analytical methodology is presented for: (i) the automatic identification of flow states and shockwaves based on processed UAV trajectories, and (ii) the subsequent extraction of various traffic parameters and performance indicators in order to study flow conditions at a signalized intersection. The experimental data to analyze traffic flow conditions was obtained in the city of Sint-Truiden, Belgium. The generation of simplified trajectories, shockwaves, and fundamental diagrams help in analyzing the interrupted-flow conditions at a signalized four-legged intersection using UAV-acquired data. The analysis conducted on such data may serve as a benchmark for the actual traffic-specific applications of the UAV-acquired data. The results reflect the value of flexibility and bird-eye view provided by UAV videos; thereby depicting the overall applicability of the UAV-based traffic analysis system. The future research will mainly focus on further extensions of UAV-based traffic applications.
This study aims to examine how social undermining restrains employee creativity. Specifically, an attempt is made to investigate the serial mediating role of interpersonal distrust and knowledge hiding in the relationship between social undermining and employee creativity. This study used purposive sampling to draw 309 employees from the advertising agencies of Pakistan. We used a time-lagged research design to collect the data on the measures at three different points in time. A self-administered questionnaire was used for the collection of data. We followed variance-based structural equation modeling (SEM) to conduct the data analysis in SmartPLS. Our study results indicated a significant negative association between social undermining and employee creativity, while serial mediation analysis showed that interpersonal distrust and knowledge hiding partially mediated the above linkage. This study’s findings contribute to the literature on employee creativity by identifying and testing social undermining as an interpersonal inhibitor factor that impairs employee creativity, and this relationship is serially mediated by interpersonal distrust and knowledge hiding. This study offers valuable insights for the managers of advertising agencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.