Insecticidal activity of weed plants, Euphorbia prostrata and Chenopodiastrum murale against stored grain insect pest Trogoderma granarium Everts, 1898 (Coleoptera: Dermestidae) Yabani bitkiler Euphorbia prostrata ve Chenopodiastrum murale'nin depolanmış tahıl zararlısı Trogoderma granarium Everts, 1898 (Coleoptera: Dermestidae)'a karşı insektisidal aktivitesi
Nano-fertilizer(s), an emerging field of agriculture, is alternate option for enhancement of plant growth replacing the synthetic fertilizers. Zinc oxide nanoparticles (ZnO NPs) can be used as the zinc source for plants. The present investigation was carried out to assess the role of ZnO NPs in growth promotion of maize plants. Biosynthesized ZnO NPs (using Bacillus sp) were characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and Zeta potential. Different concentrations of ZnO NPs (2, 4, 8, 16 mg/L) were explored in pot culture experiment. Size of ZnO NPs ranged between 16 and 20 nm. A significant increase in growth parameters like shoot length (61.7%), root length (56.9%) and significantly higher level of protein was observed in the treated plants. The overall pattern for growth biomarkers including the protein contents was maximum at 8 mg/L of ZnO NPs. It was observed that application of biosynthesized ZnO NPs has improved majority of growth biomarkers including plant growth parameters, protein contents and leaf area. Therefore, biosynthesized ZnO NPs could be considered as an alternate source of nutrient in Zn deficient soils for promoting the modern agriculture.
In developing countries, various sociodemographic and climatic factors such as urbanization, industrialization, and improved living standard, and water and energy demands will all characterize wastewater’s future. Increasing population and water shortage are the main driving forces for the reuse of untreated wastewater for irrigation and other uses in many poor countries, posing a significant threat to global food security. Although wastewater contains essential nutrients required for plant growth, it also contains toxic heavy metals and pathogens that pose a significant threat to the environment and human health. Present research work was carried out to study important physicochemical and microbiological parameters of industrial wastewater collected from various discharged points at different locations of Kala Shah Kaku (KSK) city, Pakistan. Physicochemical parameters such as pH, temperature, sodium, calcium, magnesium, bicarbonates, sodium adsorption ratio, chlorides, and heavy metals such as nickel, cadmium, and iron of all industrial wastewater samples were within the standard limits. However, certain water’s quality parameters such as TSS, BOD, COD, residual sodium carbonate, heavy metals such as chromium, and total suspended solids of all samples were exceeding the maximum allowable limits listed by Pakistani Standards. Carbonates, manganese, and cobalt were not detected in any of the wastewater samples. Total viable count and total coliform counts were higher in all samples describing low levels of sanitation. Contamination of fecal coliform and Escherichia coli was observed in about 50% of the studied wastewater samples. The overall results focus on the discharge of highly polluted wastewater in and around KSK city. Indirectly it creates significant threats to environmental pollution and human health. Continuous monitoring of physicochemical and microbial indicators of effluent’s quality for its reuse for irrigation purpose is proposed to safeguard the public health and environment.
Intensive livestock farming has become indispensable to meet the rapidly increasing demand for animal-based nutrition in low- and middle-income countries (LMICs) where antimicrobials are frequently used for treatment and prophylactic or metaphylactic purposes. However, very little is known about the trends of antimicrobial use (AMU) in dairy animals in LMICs. The objective of this study was to quantify AMU in two large commercial dairy farms in Pakistan. A retrospective study was conducted at two large corporate commercial dairy farms located in Punjab province for the year 2018. AMU was calculated using three metrics: active ingredient (AI; kg) and milligrams per population unit (mg/PU; mg/kg), which quantifies the amount of AI used, and antimicrobial treatment incidence (ATI; DDDA/1,000 cow-days), which estimates the per-day number of treatments to 1,000 cows. Total on-farm AMU was found to be 138.34 kg, 65.88 mg/kg, and 47.71 DDDA/1,000 cow-days. Measured in ATI, aminoglycosides (11.05 DDDA/1,000 cow-days), penicillins (8.29 DDDA/1,000 cow-days), and tetracyclines (8.1 DDDA/1,000 cow-days) were the most frequently used antimicrobial classes. A total of 42.46% of all the antimicrobials used belonged to the critically important antimicrobials for human medicine as defined by the World Health Organization. Considerably high AMU was found compared to other farm-level studies across the world. This was the first study to quantify AMU in the dairy industry in Pakistan. Our results showed that corporate commercial dairy management practices are associated with increased antimicrobial consumption and highlight the need for antimicrobial stewardship programs to encourage prudent use of antimicrobials in commercial dairy.
The emergence of carbapenem-resistant bacterial pathogens is a significant and mounting health concern across the globe. At present, carbapenem resistance (CR) is considered as one of the most concerning resistance mechanisms and mainly found in gram-negative bacteria of the Enterobacteriaceae family. Although carbapenem resistance has been recognized in Enterobacteriaceae from last 20 years or so, recently it emerged as a global health issue as CR clonal dissemination of various Enterobacteriaceae members especially E. coli, and Klebsiella pneumoniae are reported from across the globe at an alarming rate. Phenotypically, carbapenems resistance is in due to the two key mechanisms, like structural mutation coupled with β-lactamase production and the ability of the pathogen to produce carbapenemases which ultimately hydrolyze the carbapenem. Additionally, penicillin-binding protein modification and efflux pumps are also responsible for the development of carbapenem resistance. Carbapenemases are classified into different classes which include Ambler classes A, B, and D. Several mobile genetic elements (MGEs) have their potential role in carbapenem resistance like Tn4401, Class I integrons, IncFIIK2, IncF1A, and IncI2. Taking together, resistance against carbapenems is continuously evolving and posing a significant health threat to the community. Variable mechanisms that are associated with carbapenem resistance, different MGEs, and supplementary mechanisms of antibiotic resistance in association with virulence factors are expanding day by day. Timely demonstration of this global health concern by using molecular tools, epidemiological investigations, and screening may permit the suitable measures to control this public health menace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.