The emerging trend of modern industry automation requires intelligence to be embedded into mobile robot for ensuring optimal or near-optimal solutions to execute certain task. This yield to a lot of improvement and suggestions in many areas related to mobile robot such as path planning. The purpose of this paper is to review the mobile robots path planning problem, optimization criteria and various methodologies reported in the literature for global and local mobile robot path planning. In this paper, commonly use classical approaches such as cell decomposition (CD), roadmap approach (RA), artificial potential field (AFP), and heuristics approaches such as genetic algorithm (GA), particle swarm optimization (PSO) approach and ant colony optimization (ACO) method are considered. It is observed that when it comes to dynamic environment where most of the information are unknown to the mobile robots before starting, heuristics approaches are more popular and widely used compared to classical approaches since it can handle uncertainty, interact with objects and making quick decision. Finally, few suggestions for future research work in this field are addressed at the end of this paper.
A supercomputer can have thousands of processor-memory pairs which often referred as processing pins. Each of these pins is connected to each other through networks and passes message using a standard message passing mechanism such as Message Passing Interface. In this research, we consider the routing problem in rectangular mesh network. Each terminal pin in the network needs to be connected with its destination pin for it to function properly. Thus, maximizing the number of connection for each pair of pins and keeping the total energy throughout the network minimum becomes our main objective. In order to achieve this objective, each net need to be routed as shortest as possible. Therefore, developing a shortest path based routing algorithm is in need. In this research, Dijkstra’s algorithm is used to establish the shortest connection for each net. While this method guarantees to provide the shortest connection for each single net (if exists), however each routed net will become the obstacles and block later connections. This will add complexities to route later nets and make its routing longer than optimal or sometimes impossible to complete. Therefore, the routing sequence need to be rip-up and all nets need to be re-routed. This paper presents a complete routing algorithm which can further refine the solution by using Dijkstra’s based greedy method. The outcomes from this research is expected to benefit engineers from electric & electronic industry.
In molecular biology, recombinant Deoxyribonucleic acid technology has ignited an increase in the interest of new researches. Moreover, the splicing system has generated enthusiasm in developing computational models collaborating with formal language theory. Formal language theory tends to be a natural structure for formalising and investigating DNA computing models from this viewpoint. The work of several researchers who added control structures to the splicing formalism, thus creating universal computation systems, has provided additional inspiration for the study of splicing systems. A splicing system is a conventional model of a set of dsDNA that undergoes the cutting and pasting process with the presence of restriction enzyme and ligase. Previously, an introduction of the n-th order limit language is presented and discussed. The properties and the characteristics of the n-th order limit language are developed and also explained by using examples and sort into a few cases. However, the regulation of the existence of the n-th order limit language is left unintended. In this paper, the factors that restrict the formation of the n-th order limit language are discussed. Several restrictions applied are the length of the rules are not equal and same rules applies on several crossing sites of the initial strings. In addition, some examples are given to show the restriction of the formation of n-order limit language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.