Zinc oxide (ZnO) has been considered as one of the potential materials in solar cell applications, owing to its relatively high conductivity, electron mobility, stability against photo-corrosion and availability at low-cost.
Inorganic scintillators play a major role in ionizing radiation detection due to their high versatility to detect multiple radiation sources such as X-rays, gamma-rays, alpha, beta, and neutron particles, and their fast and high light yield, making them especially convenient for imaging, spectroscopy, and timing applications. Scintillators-based detection systems are found, among various applications, in medical imaging, homeland security, high-energy physics, industrial control, oil drilling explorations, and energy management. This Review discusses advances and prospects of perovskite scintillators, particularly low-dimensional hybrid organic-inorganic perovskite crystals and all-inorganic perovskite nanocrystals. We highlight the promise of two-dimensional lithium-doped (PEA)2PbBr4 crystals and CsPbBr3 nanocrystals as scintillators with high light yields, exceeding 20 photons/keV, and fast decay times of less than 15 ns. Such a combination may result in fast-spectral X-ray imaging, an output count rate exceeding 30 Mcps/pixel in photon-counting computed tomography, and coincidence timing resolution of less than 100 ps in positron emission tomography. We review recent strategies to further improve light yield, decay time, and coincidence timing resolution through light-matter interactions such as extraction efficiency enhancement and Purcell-enhanced scintillators. These advancements in light yields and decay times of perovskite scintillators will be particularly useful in the medical and security applications.
Polyelectrolyte complexes (PECs) are attractive materials for drug delivery application as they offer simple preparations and high drug-loading efficiency. In this study, a novel method for preparing polyelectrolyte complex nanoparticles using a simple mixing method of chitosan and poly-2-acrylamido-2-methylpropane sulfonic acid (PAMPS) solutions is presented. The effect of chitosan concentrations was examined by fixing the PAMPS concentration at 0.01 %w/v, while chitosan concentrations were varied from 0.01 to 0.05 %w/v. Based on dynamic light scattering (DLS) and zeta sizer results, increasing the chitosan concentration led to increased average PEC particle sizes with broader particle distributions from 249.1 (polydispersity index/PDI 0.13) to 318.2 nm (PDI 0.19) and changed the particle surface charges from -5.85±0.34 to 11.95±0.84 mV. The addition of glutaraldehyde (GA) followed by dialysis eliminated sodium chloride (NaCl) and produced spherical PEC nanoparticles, confirmed via scanning electron microscopy (SEM) results. Among those samples, PECs with a chitosan concentration of 0.01 %w/v are the most promising drug carrier materials due to their negative surface charges, which promote prolonged circulation time in the bloodstream.
There are many DDS (Drug Delivery System) methods that can be used in this decade. The DDS method with nanotechnology is also increasingly in demand because it can be a controlled DDS (CDDS). One of the nanomaterials that can be useful for this purpose is Mesporous Silica Nanoparticle or MSN. This article provides a review that discusses how MSN can deliver drugs, the synthesis method and its level of ability in DDS. MSN showed that its ability to deliver various types of drugs including Ibuprofen, Doxorubicin and general antibiotics. The results of the synthesis can use solution based and EISA where the release properties in DDS are quite effective. This shows that MSN is good for the use of CDDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.