Sufficient deformability can be achieved in concrete while maintaining segregation resistance either by using a chemical viscosity-modifying admixture (VMA) or increasing the fine content in the concrete. Using VMA, the initial cost of self-compacting concrete (SCC) increases, making it unsuitable for general construction. As a result, alternative methods for lowering the cost of SCC must be investigated. In this study, we assess the effectiveness of fly ash (FA) as a viscosity-modifying agent in the production of cost-effective and durable SCC. We also forge new pathways for sustainable development. The percentage of FA, superplasticizer dose, and water/binder ratio were varied, whereas the amounts of cement and water, as well as fine/coarse aggregate content were kept constant. Fresh properties, such as flow, filling and passing abilities, viscosity, and segregation resistance, were measured. Compressive/flexural strength, density, water absorption, and rate of water absorption of hardened SCC were also determined. The test results showed that fly ash can be used as an alternative to a VMA to produce cost-effective, self-compacting concrete. The slump flow of the various fresh-state concrete mixes ranged from 200 to 770 mm, with an L-box ratio of 0 to 1 and a flow time of 2.18 to 88 s. At 28 and 56 days, the compressive strengths of the concrete mixes with fly ash were found to be comparable to those of the control concrete mixes with VMA. The cost of ingredients for a specific SCC mix is 26.8% lower than the price of control concrete, according to a cost comparison assessment.
Steel reinforcement corrosion in concrete structures such as bridges, industrial plants, marine structures, and coastal buildings is a growing concern due to its impact on cost, safety, and serviceability. Corrosion leads to spalling, cracking, and reduced reinforcement diameter, which can compromise structural integrity. This study examines the behavior of concrete columns with corroded reinforcement in two phases. In the first phase, 72 columns of 150 × 150 mm cross-sectional dimensions and 300 mm length were cast and subjected to an accelerated corrosion technique. The study examined variables such as concrete cover, concrete strength, and corrosion exposure. The second phase involved studying the axial behavior of corroded columns concerning the effect of column length. Column specimens of 150 × 150 mm cross-sectional dimensions and lengths of 500 mm, 700 mm, and 900 mm were cast, corroded, and tested under axial compressive load. The study revealed that a 30 mm concrete cover offers 10% more protection against corrosion than a 20 mm cover. Continuous exposure to a corrosive environment reduces the load-carrying capacity by 50%, while columns with 28 MPa concrete strength can carry 4% more load. Longer columns are more susceptible to corrosion, leading to a significant reduction in load-carrying capacity and concrete cover damage. Therefore, maintaining adequate concrete cover, strength, and regular inspections are essential to address steel reinforcement corrosion and preserve structural integrity.
Reinforced concrete (RC) frames are an integral part of modern construction as they resist both gravity and lateral loads in beams and columns. However, the construction methodologies of RC frames are vulnerable to non-engineering defects, particularly in developing countries. The most common non-engineering defect occurs due to improper lap splice, which can compromise the structural integrity. This research demonstrates an easy, low-cost, and verifiable experimental technique incorporating micro-concrete to evaluate the seismic performance of a completely engineered RC frame with the defect of improper lap splice. The micro-concrete was prepared by using the locally available material for a target compressive strength and then two scaled-down RC frames (1/16 scale) were prepared, including one proper frame and another with improper lap splice. Finally, these frames were tested on a shake table to study their behavior under various seismic loading conditions. This study quantifies the severity of high-risk structural systems due to non-engineering defects. The experimental results demonstrate that improper lap splice can alter the frame’s damage points, triggering the failure of the whole structure.
The significance of long-span bridges being susceptible to wind-induced vibrations and the need for evaluating their aerodynamic performance is the focus of this study. The main emphasis is on experimental methods for assessing the bridges’ aerodynamic stability, using sectional model tests with the free vibration technique. The dynamic properties of the model are determined from the measured response, using various system identification methods, including the modified Ibrahim time domain (MITD) and iterative least squares (ILS) for two-degree-of-freedom systems and the logarithmic decrement method (LDM) and the Hilbert transform method (HTM) for single-degree-of-freedom (SDOF) systems. A new dynamic testing setup was designed to facilitate single-degree-of-freedom (heave and pitch) and coupled two-degree-of-freedom (2DOF) motion in a wind tunnel section model. The vertical and torsional stiffnesses of the model were adjusted with elastic springs. A Great Belt Bridge section model was selected for testing due to its streamlined aerodynamic shape. The direct and crossflow derivatives were extracted from the measured response using the system identification methods mentioned. Additionally, analytical studies and numerical computational fluid dynamics simulations were conducted to validate the experimental results. The study found that HTM is most effective in SDOF due to its ability to extract both damping and frequency from the nonlinear response, whereas the MITD method is faster in converging system parameters in 2DOF system tests. The experimental and numerical results are comparable to the flat plate, which confirms the streamlined behavior of the Great Belt section from an aerodynamic perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.