Research on the interface between solid electrolytes and electrode materials or catholyte is important to effectively and safely use their high energy densities. However, compared to interfaces with electrode materials, the interface between solid electrolytes and liquid media lacks research. Herein, the stability of NA superionic conductor (NASICON) pellets is studied in various aqueous solutions, including deionized (DI) water and a marine environment, associated with different degradation mechanisms. A representative detrimental hydronium exchange reaction between solid electrolytes and aqueous media is suppressed with increasing concentration and ion types dissolved in the solutions. Results of density functional theory calculation and electron energy loss spectroscopy reveal the different activation energies and chemical bonding states of solid electrolytes based on the aqueous solutions' conditions. NASICON's ionic conductivity decreases to ∼10 −6 S/cm because of severe changes in aqueous solutions with insufficient dissolved ions resulting in inferior chemical stability. Furthermore, chemical stability variations at a steady state can severely affect battery performance. Seawater batteries fabricated with NASICON in immersed DI water for 1 year exhibit a large resistance region from the first cycle; this system breaks down before 200 h, unlike a cell fabricated using NASICON immersed for 1 year in a marine environment.
Understanding the interfacial reaction between a solid electrolyte and reactive species is of vital importance for the development of various battery systems. In particular, the interaction between the solid electrolyte,...
The anaerobic digestibility of a targeted substrate, measured as methane yield is conducted via biochemical methane potential (BMP). In this study, the batch BMP test was conducted using Automatic Methane Potential Test System (AMPTS II) for 25 days and focused on the methane production from the digestion of food waste (FW, in the form of raw and diluted) at inoculum to substrate ratio (I/S) ratio of 2:0 and under mesophilic temperature. The results showed that solids (TS and VS) concentration reduced significantly due to the dilution. The ultimate methane yields from the digestion of raw FW and diluted FW were 1891.91ml CH4/gVS and 1983.96 ml CH4/gVS respectively. This showed that the dilution significantly improved the methane yield. In addition, the lag phase of the methane yield curve for both BMP tests was less than one (1) day, showing the good biodegradability of FW. The kinetic methane production from laboratory data and Modified Gompertz modelling fitted well. However, the kinetic equation parameters such as Mo, Rm and l from the model were slightly lower based on the observation of the laboratory data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.