Due to fresh water scarcity, farmers are using polluted water for irrigation. This research was conducted to study the bioaccumulation of Pb in wheat (Cv. Shafaq-2006). The experiment was comprised of seven treatments of lead i.e. 0-1,000 mg Pb/kg. The results revealed that lead severely reduces germination (− 30%), seedling fresh weight (− 74%), seedling dry weight (− 77%), vigor index (− 89%), tolerance index (− 84%), plant height (− 33%), number of leaves (− 41%), root fresh weight (− 50%), shoot fresh weight (− 62%), root dry weight (− 63%), shoot dry weight (− 71%), and root length (− 45%). The physiological parameters also respond negatively like stomatal conductance (− 82%), transpiration rate (− 72%) and photosynthetic rate (− 74%). Similarly, biochemical parameters also showed negative impacts, like carotenoids (− 41), total chlorophyll (− 43), chlorophyll a (− 42) and chlorophyll b (− 53). Yield parameters like the number of seed/plant, seed weight/plant, 1,000 seed weight and harvest index were reduced by 90%, 88%, 44% and 61%, respectively in T 6. In addition, protein contents (− 81%), phosphorous (− 60%) and potassium (− 55%) were highly effected in the highest lead concentration (T 6). Lead accumulation was extremely higher in seeds (119%) as compared to control plants. Lead bio-accumulation above threshold concentrations in crop parts is a serious human health concern. Fresh water scarcity is a major issue for agriculture in developing countries including Pakistan. To meet water requirements, farmers are now using industrial wastewater 1. These industrial wastewaters have the high amount of toxic heavy metals (HM) like Pb, Ni, Cd, Zn, Fe, Mn, etc. Heavy metals tend to bio-accumulate in crops and are creating serious health threats to human and ecosystem 2. Other sources of metal entry in the ecosystem include mining activities, industrial effluents, agronomic practices and use of sludge as manure 3-5. Worldwide environmental and human health problems are increasing sharply due to heavy metal contamination. Cultivation of crops near these contaminated sites result heavy metal bio-accumulation in crops and poor growth. These accumulated metals pose high risk to humans as well as to livestock health, in case of ingestion 6. Zajac et al., investigated 195 TSIP (Toxic Site Identification Program) sites in 33 LMICs (low-and middleincome countries) and reported the 820,000 womoen of childbearing age are at the risk for lead exposure 7. Lead is a major pollutant in the ecosystem, being persistent/high retention time (150-1,500 years) and shows negative impacts on human 8,9. Lead can accumulate in plants from various routes including water, air and soil. Prominent harmful effects of Pb include interference with nutrient uptake, germination reduction, reduced photosynthesis, delay in plant growth, disturbed respiration, metabolism alteration, changes in enzymatic activities, changes in root morphology and inhibition of mitosis (in tip) 10-13 , enlarged vacuoles, deformed nucleolus, increased plasmolysis and ...
Extensive pesticides use is negatively disturbing the environment and humans. Pesticide bioremediation with eco-friendly techniques bears prime importance. This study evaluates the bioremediation of chlorpyrifos in soil using indigenous Bacillus cereus Ct3, isolated from cotton growing soils. Strains were identified through ribotyping (16s rRNA) by Macrogen (Macrogen Inc. Geumchen-gu, South Korea). Bacillus cereus Ct3 was resistant up to 125 mg L−1 of chlorpyrifos and successfully degraded 88% of chlorpyfifos in 8 days at pH 8. Bacillus cereus Ct3 tolerated about 30–40 °C of temperature, this is a good sign for in situ bioremediation. Green compost, farmyard manure and rice husk were tested, where ANOVA (P < 0.05) and Plackett–Burman design, results indicated that the farm yard manure has significant impact on degradation. It reduced the lag phase and brought maximum degradation up to 88%. Inoculum size is a statistically significant (P < 0.05) factor and below 106 (CFU g−1) show lag phase of 4–6 days. Michaelis–Menten model results were as follows; R2 = 0.9919, Vmax = 18.8, Ks = 121.4 and Vmax/Ks = 0.1546. GC–MS study revealed that chlorpyrifos first converted into diethylthiophosphoric acid and 3,5,6-trichloro-2-pyridinol (TCP). Later, TCP ring was broken and it was completely mineralized without any toxic byproduct. Plackett–Burman design was employed to investigate the effect of five factors. The correlation coefficient (R2) between experimental and predicted value is 0.94. Central composite design (CBD) was employed with design matrix of thirty one predicted and experimental values of chlorpyrifos degradation, having “lack of fit P value” of “0.00”. The regression coefficient obtained was R2 = 0.93 which indicate that the experimental vales and the predicted values are closely fitted. The most significant factors highlighted in CBD/ANOVA and surface response plots were chlorpyrifor concentration and inoculum size. Bacillus cereus Ct3 effectively degraded chlorpyrifos and can successfully be used for bioremediation of chlorpyrifos contaminated soils.
The development of sustainable lightweight materials is a promising field solution in this era. The production of sustainable materials by replacing coarse aggregates with some lightweight alternative provides a good quality construction material. In this study, rocky coarse aggregates were replaced by an ultra-lightweight material (i.e., expanded polystyrene beads) to produce an equivalent rock-solid mass of concrete. Using an M15 grade of concrete composition, expanded polystyrene (EPS) beads were added in place of aggregates in amounts ranging from 5% to 40% at a water–cement (w/c) ratio of 0.60. The specimen size as per American Society for Testing and Materials (ASTM) specification was 150 mm in diameter and 300 mm in length. Furthermore, statistical analysis for the relationship study for destructive testing (DT) (i.e., compressive test machine) and non-destructive testing (NDT) (i.e., rebound hammer and ultrasonic pulse velocity (UPV)) has been performed at developed specimens under 7- and 28-day curing conditions. In the end, the results showed that NDT predicts higher compressive strength than that of DT with the addition of EPS beads up to 20% aggregate replacement, after that it is vice versa for up to 40% aggregate replacement. This study will not only help in the production of sustainable lightweight materials, but especially concrete block production can also be performed at a large scale as a sustainable engineering solution.
The sustainable development of materials is one of the key targets in the modern era of engineering. These materials are developed by different waste products, following the concept of the circular economy. This study focuses on investigating the properties of concrete using carbon black as a partial replacement of natural fine aggregate at different percentages. Experiments were designed according to the British Standard (BS1881-Part-119) and American Standard (ASTM C-78) by including carbon black in concrete beams to perform as filler material to develop sustainable concrete. In this study, mechanical properties of concrete were targeted by developing beams using different percentages (0%, 25%, 50%, 75%, and 100%) as a replacement of fine aggregates. These beams were tested for flexural strength and, later on, the same beams were cut in the form of cubes, following the equivalent cube test mechanism for the compressive strength test. The waste carbon black lightweight concrete developed in this study was utilized for both structural and non-structural purposes. At 25% and 50% replacement, the strength of lightweight concrete varied from 20–18 MPa, and according to American Concrete Institute (ACI) standards, lightweight concrete at 28 days strength with ≥17 MPa can be used as structural concrete, and the remaining 75% and 100% replacement concrete can be used for non-structural purposes. This study will help in the development of economical eco-friendly sustainable concrete materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.