Soil microbial properties are frequently used as indicators of soil fertility. However, the linkage of these properties with crop biomass is poorly documented especially in biochar amended soil with high carbon:nitrogen (C:N). A short-term field trial was conducted to observe the growth response of maize to biochar treatment in a highly weathered Ultisol of humid tropics and to observe the possible linkage of the measured microbial properties with maize biomass. Soil microbial biomass (carbon (C), nitrogen (N), phosphorus (P)), enzyme activity (β-glucosidase, urease, phosphodiesterase) and gene abundance (bacterial 16S rRNA, fungal ITS) were analyzed. For comparison, total soil C, N, and P were also analyzed. The data revealed no significant linkage of soil C, N, and P with maize biomass. A significant association of enzyme activity and gene abundance with maize biomass was not recorded. Strong positive correlation between maize above ground biomass with microbial biomass N was found (r = 0.9186, p < 0.01). Significant negative correlation was recorded between microbial biomass C:N with maize biomass (r = −0.8297, p < 0.05). These statistically significant linkages observed between microbial biomass and maize biomass suggests that microbial biomass can reflect the soil nutrient status, and possibly plant nutrient uptake. Estimation of microbial biomass can be used as a fertility indicator in soil amended with high C:N organic matter in the humid tropics.
Nutrient loss from the weathering process is a major challenge for tropical agriculture. Biochar with nutrient retention capacity has been proposed as an amendment to retain plant-available nutrients. Meanwhile, information on diazotrophic population responses to biochar application in the humid tropics is still poorly explored. A field study was carried out over three cropping cycles of maize in a typic paleudults of Peninsular Malaysia. During the first cropping cycle, the soil was amended with palm kernel shell biochar (PK), rice husk biochar (RH), palm kernel biochar with fertilizer (FPK), rice husk biochar with fertilizer (FRH), fertilizer (F), and control soil (C). Soil samples were taken at each harvesting stage and analyzed for pH, cation exchange capacity (CEC), total N, ammonium (NH 4 + -N), nitrate (NO 3 --N), microbial biomass N, and urease activity. Total and active diazotrophs were quantified from soil DNA and RNA, respectively, employing quantitative polymerase chain reaction (qPCR) amplification of the nifH gene. Palm kernel shell and rice husk biochars maintained a significant NH 4 + -N and NO 3 --N, respectively, during the second cropping cycle. Both biochars promote the total and active diazotrophic population. A detrimental impact on the nifH transcript was detected from fertilization even when biochar was co-amended. Two possible land management options for tropical soil were proposed from the overall data. First, the application of fertilizer with biochar can reduce N loss against weathering. Second, the application of biochar alone may improve biological N 2 fixation in tropical soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.