In terms of the Internet and communication, security is the fundamental challenging aspect. There are numerous ways to harm the security of internet users; the most common is phishing, which is a type of attack that aims to steal or misuse a user’s personal information, including account information, identity, passwords, and credit card details. Phishers gather information about the users through mimicking original websites that are indistinguishable to the eye. Sensitive information about the users may be accessed and they might be subject to financial harm or identity theft. Therefore, there is a strong need to develop a system that efficiently detects phishing websites. Three distinct deep learning-based techniques are proposed in this paper to identify phishing websites, including long short-term memory (LSTM) and convolutional neural network (CNN) for comparison, and lastly an LSTM–CNN-based approach. Experimental findings demonstrate the accuracy of the suggested techniques, i.e., 99.2%, 97.6%, and 96.8% for CNN, LSTM–CNN, and LSTM, respectively. The proposed phishing detection method demonstrated by the CNN-based system is superior.
Attacks on networks are currently the most pressing issue confronting modern society. Network risks affect all networks, from small to large. An intrusion detection system must be present for detecting and mitigating hostile attacks inside networks. Machine Learning and Deep Learning are currently used in several sectors, particularly the security of information, to design efficient intrusion detection systems. These systems can quickly and accurately identify threats. However, because malicious threats emerge and evolve regularly, networks need an advanced security solution. Hence, building an intrusion detection system that is both effective and intelligent is one of the most cognizant research issues. There are several public datasets available for research on intrusion detection. Because of the complexity of attacks and the continually evolving detection of an attack method, publicly available intrusion databases must be updated frequently. A convolutional recurrent neural network is employed in this study to construct a deep-learning-based hybrid intrusion detection system that detects attacks over a network. To boost the efficiency of the intrusion detection system and predictability, the convolutional neural network performs the convolution to collect local features, while a deep-layered recurrent neural network extracts the features in the proposed Hybrid Deep-Learning-Based Network Intrusion Detection System (HDLNIDS). Experiments are conducted using publicly accessible benchmark CICIDS-2018 data, to determine the effectiveness of the proposed system. The findings of the research demonstrate that the proposed HDLNIDS outperforms current intrusion detection approaches with an average accuracy of 98.90% in detecting malicious attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.