Malaria is a disease activated by a type of microscopic parasite transmitted from infected female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. Recently, some automated methods have been proposed that exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep learning approaches modernize the world with their superior performance. Convolutional Neural Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden layers of the model without any handcrafting. The detection of malaria-infected red blood cells from segmented microscopic blood images using convolutional neural networks can assist in quick diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this paper are two-fold. First, we evaluate the performance of different existing deep learning models for efficient malaria detection. Second, we propose a customized CNN model that outperforms all observed deep learning models. It exploits the bilateral filtering and image augmentation techniques for highlighting features of red blood cells before training the model. Due to image augmentation techniques, the customized CNN model is generalized and avoids over-fitting. All experimental evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.
Movement analysis of infants’ body parts is momentous for the early detection of various movement disorders such as cerebral palsy. Most existing techniques are either marker-based or use wearable sensors to analyze the movement disorders. Such techniques work well for adults, however they are not effective for infants as wearing such sensors or markers may cause discomfort to them, affecting their natural movements. This paper presents a method to help the clinicians for the early detection of movement disorders in infants. The proposed method is marker-less and does not use any wearable sensors which makes it ideal for the analysis of body parts movement in infants. The algorithm is based on the deformable part-based model to detect the body parts and track them in the subsequent frames of the video to encode the motion information. The proposed algorithm learns a model using a set of part filters and spatial relations between the body parts. In particular, it forms a mixture of part-filters for each body part to determine its orientation which is used to detect the parts and analyze their movements by tracking them in the temporal direction. The model is represented using a tree-structured graph and the learning process is carried out using the structured support vector machine. The proposed framework will assist the clinicians and the general practitioners in the early detection of infantile movement disorders. The performance evaluation of the proposed method is carried out on a large dataset and the results compared with the existing techniques demonstrate its effectiveness.
The lung tumor is among the most detrimental kinds of malignancy. It has a high occurrence rate and a high death rate, as it is frequently diagnosed at the later stages. Computed Tomography (CT) scans are broadly used to distinguish the disease; computer aided systems are being created to analyze the ailment at prior stages productively. In this paper, we present a fully automatic framework for nodule detection from CT images of lungs. A histogram of the grayscale CT image is computed to automatically isolate the lung locale from the foundation. The results are refined using morphological operators. The internal structures are then extracted from the parenchyma. A threshold-based technique is proposed to separate the candidate nodules from other structures, e.g., bronchioles and blood vessels. Different statistical and shape-based features are extracted for these nodule candidates to form nodule feature vectors which are classified using support vector machines. The proposed method is evaluated on a large lungs CT dataset collected from the Lung Image Database Consortium (LIDC). The proposed method achieved excellent results compared to similar existing methods; it achieves a sensitivity rate of 93.75%, which demonstrates its effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.