Among various ways to produce nanowires, anodic alumina membrane- (AAM-) based synthesis has constantly received much attention, because AAM has a uniform and parallel porous nanostructure which makes it an ideal template material for fabricating highly ordered nanostructures. In this paper, we report fabrication of InSb nanowire arrays with diameter of 200 nm and 30 nm by direct current electrodeposition inside the nanochannels of anodic alumina membranes without subsequent annealing. The nanowires have four major growth directions, (220) being the most dominant with structure defects such as twins. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) results demonstrate that these InSb nanowires are uniform with diameters about 200 nm and 30 nm, corresponding to the pore diameter of the AAMs. The I-V measurement of a single nanowire is also reported with encouraging preliminary results.
Silicon-based terahertz (THz) integrated circuits (ICs) have made rapid progress over the past decade. The demonstrated basic component performance, as well as the maturity of design tools and methodologies, have made it possible to build high-complexity THz integrated systems. Such implementations are undoubtedly highly attractive due to their low cost and high integration capability; however, their unique characteristics, both advantageous and disadvantageous, also call for research investigations into unconventional systematic architectures and novel THz applications. In this paper, we review Manuscript
InSb nanowires with high crystalline properties are synthesized with a diameter of 200 nm via direct current electrodeposition method inside the nanochannels of anodic alumina membranes. For the first time, the characteristics of field effect transistors based on InSb nanowires synthesized via electrochemistry is presented. A single InSb nanowire is used as a channel with gold source and drain contacts. A p ++ silicon substrate is used as the back-gate contact. Both nanowire synthesis and device fabrication are performed at room temperature and nanowire hole mobility is measured to be 57 cm 2 V −1 s −1 suggesting high structural quality of the as-grown InSb nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.