We have evaluated the effects of different fish feeds on the body composition, growth, and enzyme activities of Labeo rohita (Rohu). In total, 240 fishes between the average weights of 24.77±2.15g were studied. The treatments were applied in a completely randomized design, with 4 treatments of 60 fishes each. Treatments consisted of four different fish feeds [Oryza (T1), AMG (T2), Aqua (T3), and Supreme (T4)]. Body composition, growth performance, and enzyme activities were evaluated. There was a significant variation in performance of fishes fed with different type of feed; as fishes having Oryza feed showed the highest weight gain, specific growth rate (SGR), and best feed conversion ratio (FCR) as compared to other groups that were considered to be significant (P ≤ 0.05). High net weight gain was obtained in T4 when compared with T2 and T3. FCR value of T4 was less than T1 but higher than T2, T3 and T2, which showed the lowest values. The specific growth rate was recorded as average in T4, but T2 led a high SGR than T3. Similarly, crude protein level and digestive enzymes activity was recorded significantly highest in fed with Oryza (T1) as compared to AMG (T2), Aqua (T3), and Supreme (T4). Water quality parameters were recorded significant in all treatments except pH and DO of treatment (T1), significantly different from other treatments. It was concluded that Rohu (Labeo rohita) could show a promising growth rate and protease enzyme activity when fed with the Oryza feed of 25% protein.
The impact of fish oil concentration on the oxidative stability of microcapsules through the spray drying process using chitosan and maltodextrin as wall material was studied. Emulsions were prepared with different Tuna fish oil (TFO) content (TFO-10%, TFO20%, TF030% TF0-40%) while wall material concentration was kept constant. Microencapsulated powder resulting from emulsion prepared with high fish oil load have high moisture content, wettability, total oil and low encapsulation efficiency, hygroscopicity and bulk tapped density. Oxidative stability was evaluated periodically by placing microcapsules at room temperature. Microcapsules prepared with TFO-10% presented high oxidative stability in terms of peroxide value (2.94±0.04) and anisidine value (1.54±0.02) after 30 days of storage. It was concluded that optimal amounts of fish oil for microencapsulation are 10% and 20% using chitosan and maltodextrin that extended its shelf life during study period.
Zusammenfassung. Die Post Stroke Depression (PSD) ist eine häufig psychische Störung nach einem Insult. Sie beeinflusst den Outcome der Rehabilitation nach Insult und erhöht die Mortalität. Die symptomatologische Beschreibung der depressiven Symptome und Diagnostik erfolgt via ICD-10 Kriterien. Der vorliegende Artikel gibt eine Übersicht über Ätiologische Theorien, diagnostische Ansätze und therapeutische Strategien der PSD.
Poultry industry is expanding rapidly and producing million tons of feather waste annually. Massive production of keratinaceous byproducts in the form of industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Keratinase released by a variety of microbes (bacteria and fungi) can be used for the effective treatment of keratin waste. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This study involves the isolation, characterization, and potential utility of fungal species for the degradation of chicken-feather waste through submerged and solid-state fermentation. The isolated fungus was identified and characterized as Aspergillus (A.) flavus. In a trial of 30 days, it was appeared that 74 and 8% feather weight was reduced through sub-merged and solid-state fermentation, respectively by A. flavus. The pH of the growth media in submerged fermentation was changed from 4.8 to 8.35. The exploited application of keratinolytic microbes is, therefore, recommended for the treatment of keratinaceous wastes to achieve dual benefits of remediation.
Reports abound on Lernaea parasitizing the brood stock, fingerlings, and marketable-sized culturable freshwater fish species in various parts of the world. We investigated seven small-scale aquaculture farms and how the prevailing Lernaea is impacting them. Randomly seven fish farms were selected to determine the prevalence percentage of lernaeid ectoparasites. Relevant information of the fishponds to estimate the various aspects such as effects of water source and quality, feed, stocking density, treatment used, and weight and length of fish, concerned with Lernaea infestation and prevalence was gathered. The results indicated that Catla catla (F. Hamilton, 1822) showed highest prevalence (41.7%) among the seven fish species, whereas Oreochromis niloticus showed zero. Other five fish species Ctenopharyngodon idella, Cirrhinus cirrhosis, Cyprinus carpio, Labeo rohita and Hypophthalmichthys molitrix showed 13.2%, 8.1%, 7.7%, 7.4%, 0.9% prevalence, respectively. In Royal Fish Farm 84.3% lernaeid infestation was observed, while no parasite was observed in the Vicent’s Chunnian fish farm. The water source, quality, feed, fertilizers, stocking density, water temperature, and potential treatment options displayed varying tendencies among fish farms and prevalence. Depending on the weight and length, the highest prevalence (56.7%, and 66.7%) was observed in 3501-4000 g and 81-90 cm groups. The infestation rate varied in various fish body parts with the dorsal fin the most vulnerable organ and showed 2.3% overall prevalence (while 18.4% contribution within total 12.6% infestation). Out of 147 infected fish samples, 45 were extensively contaminated by Lernaea spread. In conclusion, our findings confirm that Lernaea could pose a considerable threat to marketable fish, and various treatment options should be educated to the farmers to help mitigate the spread and potential losses. Furthermore, Catla catla is more vulnerable to Lernaea infestation (41.7%), so are the fish species being cultured at higher stocking densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.