Abstract. This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.
Debris flows are among the fatal geological hazards in Malaysia, with 23 incidents recorded in the last two decades. To date, very few studies have been carried out to understand the debris flow processes, causes, and runouts nationwide. This study simulated the debris flow at the Mesilau watershed of Kundasang Sabah caused by the prolonged rainfall after the 2015 Ranau earthquake. Several interrelated processing platforms, such as ArcGIS, HEC-HMS, and HyperKANAKO, were used to extract the parameters, model the debris flow, and perform a sensitivity analysis to achieve the best-fit debris flow runout. The debris flow travelled at least 18.6 km to the Liwagu Dam. The best-fit runout suggested that the average velocity was 12.5 m/s and the lead time to arrive at the Mesilau village was 4.5 min. This high debris flow velocity was probably due to the high-water content from the watershed baseflow with a discharge rate of 563.8 m3/s. The flow depth and depositional thickness were both lower than 5.0 m. This study could provide crucial inputs for designing an early warning system, improving risk communication, and strengthening the local disaster risk reduction and resilience strategy in a tectonically active area in Malaysia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.