A newly developed method based on ultrahigh performance liquid chromatography (UHPLC) was optimized for the simultaneous determination of vitamin D3 and menaquinone-7 (MK-7) in tablet formulation in the present study. UHPLC separation of vitamin D3 and MK-7 was performed with ACE Excel 2 C18-PFP column (2 μm, 2.1 × 100 mm) at 0.6 mL min−1 flow rate, whereas the mobile phase consisted of methanol/water (19 : 1, v/v, phase A) and isopropyl alcohol (99.9%, phase B) containing 0.5% triethylamine. Isocratic separation of both the analytes was performed at 40°C by pumping the mobile phases A and B in the ratio of 50 : 50 (v/v, pH, 6.0). Both analytes were detected at a wavelength of 265 nm and the injection volume was 1.0 μL. The overall runtime per sample was 4.5 min with retention time of 1.26 and 3.64 min for vitamin D3 and MK-7, respectively. The calibration curve was linear from 5.0 to 100 μg mL−1 for vitamin D3 and MK-7 with a coefficient of determination (R2) ≥ 0.9981, while repeatability and reproducibility (expressed as relative standard deviation) were lower than 1.46 and 2.21%, respectively. The proposed HPLC method was demonstrated to be simple and rapid for the determination of vitamin D3 and MK-7 in tablets.
The use of pesticides is unavoidable in agricultural practices. This class of chemicals is highly toxic for the environment as well as for humans. The present work was carried out to assess the presence of some pesticides (diafenthiuron, lufenuron, azoxystrobin, difenoconazole, and chlorothalonil) residues in five of the very commonly used vegetables (eggplant, capsicum, apple gourd, cauliflower, and sponge gourd). Matrix solid phase dispersion (MSPD) technique was used to extract the pesticides and subsequently their quantification was performed through high performance liquid chromatography (HPLC) coupled to ultraviolet-visible (UV-Vis) detector. The elution was accomplished at wavelength of 254 nm by injecting 20 µL of standards or samples into chromatographic system. The mobile phase consisted of acetonitrile and water (80:20 v/v), where the flow rate was adjusted at 1.0 ml/min. The linearity was good (R2 ≥ 0.994) over a concentration range from 20 to 100 μg/ml for the investigated pesticides. The low detection limits showed a quite appreciable potential of the method to detect (1.12–1.61 μg/L) and quantify (3.73–5.36 μg/ml) the pesticides under study. The accuracy was demonstrated in terms of percent recovery which ranged between 88.5% and 116.9% for all the pesticides under investigation. These results justify the suitability of the technique for the intended purpose. The concentration of difenoconazole in apple gourd (20.97 mg/kg), cauliflower (10.28 mg/kg), and sponge gourd (40.32 mg/kg) whereas diafenthiuron in cauliflower (0.66 mg/kg) exceeded the maximum residue level (MRLs) as defined by Food and Agriculture Organization of the United Nations and the World Health Organization (FAO/WHO). Target hazard quotient (THQ) values of difenoconazole and diafenthiuron (except for adults) were more than one which indicates the significant effect on human health on consumption of apple gourd, cauliflower, and sponge gourd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.