There are numeric numbers that define chemical descriptors that represent the entire structure of a graph, which contain a basic chemical structure. Of these, the main factors of topological indices are such that they are related to different physical chemical properties of primary chemical compounds. The biological activity of chemical compounds can be constructed by the help of topological indices. In theoretical chemistry, numerous chemical indices have been invented, such as the Zagreb index, the Randić index, the Wiener index, and many more. Hex-derived networks have an assortment of valuable applications in drug store, hardware, and systems administration. In this analysis, we compute the Forgotten index and Balaban index, and reclassified the Zagreb indices, A B C 4 index, and G A 5 index for the third type of hex-derived networks theoretically.
A topological index is a numerical representation of a chemical structure, while a topological descriptor correlates certain physico-chemical characteristics of underlying chemical compounds besides its numerical representation. A large number of properties like physico-chemical properties, thermodynamic properties, chemical activity, and biological activity are determined by the chemical applications of graph theory. The biological activity of chemical compounds can be constructed by the help of topological indices such as atom-bond connectivity (ABC), Randić, and geometric arithmetic (GA). In this paper, Randić, atom bond connectivity (ABC), Zagreb, geometric arithmetic (GA), ABC4, and GA5 indices of the mth chain silicate S L ( m , n ) network are determined.
A Topological index also known as connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. In QSAR/QSPR study, physico-chemical properties and topological indices such as Randić, atom-bond connectivity (ABC) and geometric-arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study HDCN1(m,n) and HDCN2(m,n) of dimension m , n and derive analytical closed results of general Randić index R α ( G ) for different values of α . We also compute the general first Zagreb, ABC, GA, A B C 4 and G A 5 indices for these Hex derived cage networks for the first time and give closed formulas of these degree-based indices.
The study of graphs and networks accomplished by topological measures plays an applicable task to obtain their hidden topologies. This procedure has been greatly used in cheminformatics, bioinformatics, and biomedicine, where estimations based on graph invariants have been made available for effectively communicating with the different challenging tasks. Irregularity measures are mostly used for the characterization of the nonregular graphs. In several applications and problems in various areas of research like material engineering and chemistry, it is helpful to be well-informed about the irregularity of the underline structure. Furthermore, the irregularity indices of graphs are not only suitable for quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) studies but also for a number of chemical and physical properties, including toxicity, enthalpy of vaporization, resistance, boiling and melting points, and entropy. In this article, we compute the irregularity measures including the variance of vertex degrees, the total irregularity index, the σ irregularity index, and the Gini index of a new graph operation.
Topological indices are the mathematical tools that correlate the chemical structure with various physical properties, chemical reactivity or biological activity numerically. A topological index is a function having a set of graphs as its domain and a set of real numbers as its range. In QSAR/QSPR study, a prediction about the bioactivity of chemical compounds is made on the basis of physico-chemical properties and topological indices such as Zagreb, Randić and multiple Zagreb indices. In this paper, we determine the lower and upper bounds of Zagreb indices, the atom-bond connectivity (ABC) index, multiple Zagreb indices, the geometric-arithmetic (GA) index, the forgotten topological index and the Narumi-Katayama index for the Cartesian product of F-sum of connected graphs by using combinatorial inequalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.