Through the expeditious expansion of the wireless network, the unlicensed bandwidth-based devices are growing substantially as compared to the present vacant bandwidth. Cognitive radio networks present a proficient solution to the spectrum shortage diminution hitch by allowing the usage of the vacant part of the spectrum that is not currently in use of the Primary User licensed bandwidth to the secondary user or cognitive radio user. Spectrum management procedure in cognitive radio network comprises of spectrum sharing, sensing and handoff. Spectrum handoff plays a vital role in spectrum management and primarily focuses on single handoff strategies. This paper presents a primary user traffic pattern-based opportunistic spectrum handoff (PUTPOSH) approach to use in the cognitive radio networks. PUTPOSH permits a secondary user to sense the arrival of a primary user and use an opportunistic handoff scheme. The opportunistic handoff scheme firstly detects the arrival of the primary users by energy detection sensing and secondly, it allows a cognitive radio user to decide whether to do handoff or not contingent upon the overall service time to reduce the unused handoffs. The handoffs can either be reactive or proactive based on the arrival rate of the primary user. The simulation results show that the presented PUTPOSH approach (a) minimizes the number of handoffs and the overall service time, and (b) maintains the channel utilization and throughput of the system at a maximal point.
Abstract:Carpooling is an environmentally friendly and sustainable emerging traveling mode that enables commuters to save travel time and travel expenses. In order to co-travel, individuals or agents need to communicate, interpret information, and negotiate to achieve co-operation to find matching partners. This paper offers the scheme of a carpooling model for a set of candidate carpoolers. The model is interpreted using an agent-based simulation to analyze several effects of agents' interaction and behavior adaptations. Through communication and negotiation processes, agents can reach dynamic contracts in an iterative manner. The start of the negotiation process relies on the agents' intention to emit an invitation for carpooling. The realization of the negotiation process depends significantly on the departure time choice, on the agents' profile, and on route optimization. The schedule or agenda adaptation relies on the preferences among the realistic schedules of the agents and usually depends on both the participation of the trip and on the time of day. From the considerations, it is possible to reveal the actual representation of the possible carpoolers during the simulated period. Experiments demonstrate the nearly-polynomial relationship between computation time and the number of agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.