Data analytics, machine intelligence, and other cognitive algorithms have been employed in predicting various types of diseases in health care. The revolution of artificial neural networks (ANNs) in the medical discipline emerged for data-driven applications, particularly in the healthcare domain. It ranges from diagnosis of various diseases, medical image processing, decision support system (DSS), and disease prediction. The intention of conducting the research is to ascertain the impact of parameters on diabetes data to predict whether a particular patient has a disease or not. This paper develops an improved ANN model trained using an artificial backpropagation scaled conjugate gradient neural network (ABP-SCGNN) algorithm to predict diabetes effectively. For validating the performance of the proposed model, we conduct a large set of experiments on a Pima Indian Diabetes (PID) dataset using accuracy and mean squared error (MSE) as evaluation metrics. We use different number of neurons in the hidden layer, ranging from 5 to 50, to train the ANN models. The experimental results show that the ABP-SCGNN model, containing 20 neurons, attains 93% accuracy on the validation set, which is higher than using the other ANNs models. This result confirms the model’s effectiveness and efficiency in predicting diabetes disease from the required data attributes.
Smart applications and intelligent systems are being developed that are self-reliant, adaptive, and knowledge-based in nature. Emergency and disaster management, aerospace, healthcare, IoT, and mobile applications, among them, revolutionize the world of computing. Applications with a large number of growing devices have transformed the current design of centralized cloud impractical. Despite the use of 5G technology, delay-sensitive applications and cloud cannot go parallel due to exceeding threshold values of certain parameters like latency, bandwidth, response time, etc. Middleware proves to be a better solution to cope up with these issues while satisfying the high requirements task offloading standards. Fog computing is recommended middleware in this research article in view of the fact that it provides the services to the edge of the network; delay-sensitive applications can be entertained effectively. On the contrary, fog nodes contain a limited set of resources that may not process all tasks, especially of computation-intensive applications. Additionally, fog is not the replacement of the cloud, rather supplement to the cloud, both behave like counterparts and offer their services correspondingly to compliance the task needs but fog computing has relatively closer proximity to the devices comparatively cloud. The problem arises when a decision needs to take what is to be offloaded: data, computation, or application, and more specifically where to offload: either fog or cloud and how much to offload. Fog-cloud collaboration is stochastic in terms of task-related attributes like task size, duration, arrival rate, and required resources. Dynamic task offloading becomes crucial in order to utilize the resources at fog and cloud to improve QoS. Since this formation of task offloading policy is a bit complex in nature, this problem is addressed in the research article and proposes an intelligent task offloading model. Simulation results demonstrate the authenticity of the proposed logistic regression model acquiring 86% accuracy compared to other algorithms and confidence in the predictive task offloading policy by making sure process consistency and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.