Intelligent Transportation System (ITS) is the fundamental requirement to an intelligent transport system. The proposed hybrid model Stacked Bidirectional LSTM and Attention-based GRU (SBAG) is used for predicting the large scale traffic speed. To capture bidirectional temporal dependencies and spatial features, BDLSTM and attention-based GRU are exploited. It is the first time in traffic speed prediction that bidirectional LSTM and attention-based GRU are exploited as a building block of network architecture to measure the backward dependencies of a network. We have also examined the behaviour of the attention layer in our proposed model. We compared the proposed model with state-of-the-art models e.g. Fully Convolutional Network, Gated Recurrent Unit, Long-short term Memory, Bidirectional Long-short term Memory and achieved superior performance in large scale traffic speed prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.