Sample pretreatment is the most important procedure to remove the matrix for interfacing with mass spectrometry (MS). Additionally, for the samples with low concentration, the process of preconcentration is required before MS analysis. We have newly developed a solid-phase extraction stationary phase based on C60-fullerene covalently bound to silica for purification of biomolecules of different characteristics. Silica particles of different porosity are modified with aminopropyl linker and then covalently bound to C60-fullerenoacetic acid or C60-epoxyfullerenes. The developed materials have been successfully applied as an alternative to commercially available reversed-phase materials for solid-phase extraction. C60-fullerene silica is able to retain small and hydrophilic molecules like phosphopeptides, which can be easily lost by reversed-phase sorbents. The novel materials are applied for desalting and preconcentration of proteins and peptides, especially phosphopeptides. In addition, the C60-fullerene silica is applied for the solid-phase extraction of selected flavonoids with recoveries of approximately 99%. The recoveries are compared with the commercially available solid-phase extraction materials.
A simple room temperature solution‐based method for the preparation of highly porous iron(III) benzenetricarboxylate coordination polymer films on the internal surface of a macroporous polystyrene‐divinylbenzene‐methacrylic acid polymer is reported. The resulting metal‐organic polymer hybrid (MOPH) maintains a high specific micropore surface area of 389 m2 g‐1 and thermal stability above 250 °C in air. The MOPH preparation is readily adapted to a capillary column, yielding a flow‐through separation device with excellent flow permeability and modest back‐pressure. The excellent separation capability of the MOPH column is demonstrated by enriching phosphopeptides from mixtures of digested proteins. This approach to MOPH synthesis is easily implemented and likely adaptable to a wide range of coordination polymers and metal‐organic frameworks.
Photothermal therapy (PPT) is a platform to fight cancer by using multiplexed interactive plasmonic nanomaterials as probes in combination with the excellent therapeutic performance of near-infrared (NIR) light. With recent rapid developments in optics and nanotechnology, plasmonic materials have potential in cancer diagnosis and treatment, but there are some concerns regarding their clinical use. The primary concerns include the design of plasmonic nanomaterials which are taken up by the tissues, perform their function and then clear out from the body. Gold nanoparticles (Au NPs) can be developed in different morphologies and functionalized to assist the photothermal therapy in a way that they have clinical value. This review outlines the diverse Au morphologies, their distinctive characteristics, concerns and limitations to provide an idea of the requirements in the field of NIR-based therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.