Photothermal therapy (PPT) is a platform to fight cancer by using multiplexed interactive plasmonic nanomaterials as probes in combination with the excellent therapeutic performance of near-infrared (NIR) light. With recent rapid developments in optics and nanotechnology, plasmonic materials have potential in cancer diagnosis and treatment, but there are some concerns regarding their clinical use. The primary concerns include the design of plasmonic nanomaterials which are taken up by the tissues, perform their function and then clear out from the body. Gold nanoparticles (Au NPs) can be developed in different morphologies and functionalized to assist the photothermal therapy in a way that they have clinical value. This review outlines the diverse Au morphologies, their distinctive characteristics, concerns and limitations to provide an idea of the requirements in the field of NIR-based therapeutics.
A workflow is designed for the analysis of lipoproteins, high density lipoproteins (HDL), apoproteins, and lipid fraction, employing an organic polymeric anion exchanger through the enrichment of lipoproteins/peptides from serum. Polymeric separation media are chemically stable over the wide pH range. Poly(GMA/DVB), poly(GMA/EGDMA), and poly(GPE/DVB) are synthesized by radical polymerization, derivatized as strong anion exchangers, and used for lipoproteins enrichment. Lipoprotein's surface is covered by phospholipids, having phosphate groups, therefore lipoproteins are enriched by the interaction of anion exchanger with the phosphate groups and eluted at the pH of 7.5. HDL are further isolated by precipitating the very low-density lipoproteins (VLDL) and low-density lipoproteins (LDL) with phosphotungstic acid as precipitating reagent, followed by delipidation via liquid/liquid extraction. Apolipoproteins profiling is done by MALDI-MS, and lipids are analyzed using gold nanoparticles in the LDI-MS process. This study introduces a lipoproteomics work flow in separation science which analyses the intact lipoproteins. Furthermore, solid phase extraction (SPE)-based methodology is reported for the first time in lipoproteomics. Use of organic polymers, high reproducibility, detailed analysis of lipoproteins, apoproteins/peptides, and lipids from the single serum sample are the distinctive features of this workflow. Being biomarkers of numerous diseases, lipoproteins have clinical significance, and this workflow can be used at diagnostic and therapeutic levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.