People often have trouble recognizing a song especially, if the song is sung by a not original artist which is called cover song. Hence, an identification system might be used to help recognize a song or to detect copyright violation. In this study, we try to recognize a song and a cover song by using the fingerprint of the song represented by features extracted from MPEG-7. The fingerprint of the song is represented by Audio Signature Type. Moreover, the fingerprint of the cover song is represented by Audio Spectrum Flatness and Audio Spectrum Projection. Furthermore, we propose a sliding algorithm and k-Nearest Neighbor (k-NN) with Bhattacharyya distance for song recognition and cover song recognition. The results of this experiment show that the proposed fingerprint technique has an accuracy of 100% for song recognition and an accuracy of 85.3% for cover song recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.