Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants.
Plant secondary metabolites (SMs) play important roles in plant survival and in creating ecological connections between other species. In addition to providing a variety of valuable natural products, secondary metabolites help protect plants against pathogenic attacks and environmental stresses. Given their sessile nature, plants must protect themselves from such situations through accumulation of these bioactive compounds. Indeed, secondary metabolites act as herbivore deterrents, barriers against pathogen invasion, and mitigators of oxidative stress. The accumulation of SMs are highly dependent on environmental factors such as light, temperature, soil water, soil fertility, and salinity. For most plants, a change in an individual environmental factor can alter the content of secondary metabolites even if other factors remain constant. In this review, we focus on how individual environmental factors affect the accumulation of secondary metabolites in plants during both biotic and abiotic stress conditions. Furthermore, we discuss the application of abiotic and biotic elicitors in culture systems as well as their stimulating effects on the accumulation of secondary metabolites. Specifically, we discuss the shikimate pathway and the aromatic amino acids produced in this pathway, which are the precursors of a range of secondary metabolites including terpenoids, alkaloids, and sulfur- and nitrogen-containing compounds. We also detail how the biosynthesis of important metabolites is altered by several genes related to secondary metabolite biosynthesis pathways. Genes responsible for secondary metabolite biosynthesis in various plant species during stress conditions are regulated by transcriptional factors such as WRKY, MYB, AP2/ERF, bZIP, bHLH, and NAC, which are also discussed here.
Melatonin is a multifunctional signaling molecule that is ubiquitously distributed in different parts of a plant and responsible for stimulating several physio-chemical responses to adverse environmental conditions. In this review, we show that, although plants are able to biosynthesize melatonin, the exogenous application of melatonin to various crops can improve plant growth and development in response to various abiotic and biotic stresses (e.g., drought, unfavorable temperatures, high salinity, heavy metal contamination, acid rain, and combined stresses) by regulating antioxidant machinery of plants. Current knowledge suggests that exogenously applied melatonin can enhance the stress tolerance of plants by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Enzymic antioxidants upregulated by exogenous melatonin include superoxide dismutase, catalase, glutathione peroxidase, and enzymes involved in the ascorbate–glutathione cycle (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase), whereas levels of non-enzymatic antioxidants such as ascorbate, reduced glutathione, carotenoids, tocopherols, and phenolics are also higher under stress conditions. The enhanced antioxidant system consequently exhibits lower lipid peroxidation and greater plasma membrane integrity when under stress. However, these responses vary greatly from crop to crop and depend on the intensity and type of stress, and most studies to date have been conducted under controlled conditions. This means that a wider range of crop field trials and detailed transcriptomic analysis are required to reveal the gene regulatory networks involved in the between melatonin, antioxidants, and abiotic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.