Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants.
Non-toxicity, biodegradability and non-carcinogenicity of the natural pigments, dyes and colorants make them an attractive source for human use. Bacterial pigments are colored metabolites secreted by bacteria under stress. The industrial uses of bacterial pigments have increased many folds because of several advantages over the synthetic pigments. Among natural resources, bacterial pigments are mostly preferred because of simple culturing and pigment extraction techniques, scaling up and being time economical. Generally, the bacterial pigments are safe for human use and therefore have a wide range of applications in pharmaceutical, textile, cosmetics and food industries. Therapeutic nature of the bacterial pigments is revealed because of their antimicrobial, anticancer, cytotoxic and remarkable antioxidant properties. Owing to the importance of bacterial pigments it was considered important to produce a comprehensive review of literature on the therapeutic and industrial potential of bacterial pigments. Extensive literature has been reviewed on the biomedical application of bacterial pigments while further opportunities and future challenges have been discussed.
Advancement in research on dyes obtained from natural sources e.g., plants, animals, insects and micro-organisms is widening the application of natural dyes in various fields. The natural dyes substituted their synthetic analogs at the beginning of twentieth century due to their improved quality, value, ease of production, ease of dyeing and some other factors. This era of dominance ended soon when toxic effects of synthetic dyes were reported. In the last few decades, pigments from micro-organisms especially soil derived bacteria is replacing dyes from other natural sources because of the increasing demand for safe, non-toxic, and biodegradable natural product. Apart from application in agriculture practices, cosmetics, textile, food and paper industries, bacterial pigments have additional biological activities e.g., anti-tumor, anti-fungal, anti-bacterial, immunosuppressive anti-viral, and many more which make them a potential candidate for pharmaceutical industry. Optimization of culture conditions and fermentation medium is the key strategies for large scale production of these natural dyes. An effort has been done to give an overview of pigments obtained from bacteria of soil origin, their dominance over dyes from other sources (natural and synthetic) and applications in the medical world in the underlying study.
We describe the synthesis of AgNPs using Ocimum basilicum L. var. thyrsiflora leaf derived callus extracts formed in response to thidiazuron alone and a combination of TDZ melatonin which act both as reducing and stabilizing agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.