Fertility of hybrid tea roses is often reduced due to their interspesific origin but also to intensive inbreeding. New genotypes used as pollen donors represent an economic risk for a breeding program, as their influence on seed production is unknown. In this study 9 garden rose genotypes were selected from a company database as high fertile or low fertile male parents, according to the number of seeds per hybridization. Pollen morphology and in vitro germination of the selected genotypes were characterized. Pollen was either small (mean diameter = 30 µm), shrunken, and irregular (abnormal), or large (mean diameter = 30 µm), elliptical and crossed by furrows (normal). High correlations were found between the number of seeds produced per hybridization and the pollen diameter (r = 0.94) or the percentage of normal pollen (r = 0.96). In order to evaluate the predictive power of the models, we conducted regression analyses and performed a validation experiment on genotypes not present in the database and without background information on fertility. Pollen diameter and percentage of normal pollen were characterized and fitted in the regression models for seed set predictions. Validation with an independent dataset gave a good prediction for 83.3% of the data. This indicates that using either the mean pollen diameter or the percentage of normal pollen resulted in effective fertility prediction. Moreover cluster analysis of the data classified all the cultivars into various groups with varying fertility. This tool could enhance the genetic variability in crossings between hybrid tea roses, thus creating possibilities for less economically risky exploitation of new tetraploid genotypes as male parents.
Abstract:The diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is very destructive crucifers specialized pest that has resulted in significant crop losses worldwide. The pest is well attracted to glucosinolate-containing crucifers such as; Barbarea vulgaris (Brassicaceae), and generally to other plants in the genus Barbarea. B. vulgaris on their part, build up resistance against DBM and other herbivorous insects using glucosinolates; that are plant secondary metabolites used in plant defense-contained only in plants of the order Brassicales. Aside glucosinolates, plants in this genus Barbarea (Brassicaceae) also contain saponins; which is toxic to insects and act as feeding deterrents for plant herbivores, most importantly, DBM, as it was found to prevent the survival of DBM larvae on the plant. Saponins are plant secondary metabolites have been established in higher concentrations in younger in contrast to older leaves within the same plant. Previous studies have found a relationship between ontogenetical changes in the host plant's saponin content and attraction/resistance to P. xylostella. The younger leaves recorded higher concentrations of glucosinolates and saponins, which naturally attracts the plant herbivores. DBM was reported to have evolved mechanisms to avoid the toxicity of the former. The plant-herbivore had adapted glucosinolates for host plant recognition, feeding and oviposition stimulants. Despite the adaptation for oviposition by P. xylostella adults, larvae of the insect cannot survive on the same plant. An example is in some varieties of B. vulgaris. The triterpenoid saponins which act as feeding deterrents in larvae are responsible for this direct defense mechanism against P. xylostella. In the future, trials by plant breeders could aim at transferring this insect resistance to other crops. The previous trials had limited because of lack of knowledge on the biosynthetic pathways and regulatory networks of saponins. Herein, we discussed exclusively; saponins mediated plant defense mechanisms against the DBM.
No abstract
Cotton is an economically important natural fiber in the world, whose seeds are used as food and fiber used in the manufacturing of textiles. Cotton is naturally a renewable synthetic fiber which is derived from petroleum. Restriction in conventional breeding program to hereditary change may be because of those of information something like yield revenue and fiber quality of traits. Vitally, the genome representation of the cotton for various traits is the basic need for breeding purposes. The present review discusses the issues of conventional breeding and genomics resources & efforts are utilized to enhance the yield of cotton.
Land subsidence is an ongoing problem negatively affecting Victoria County along the Gulf Coast. Groundwater withdrawal and hydrocarbon extraction in the County are some of the known factors behind this geological hazard. In this study, we have used geospatial analysis and a conceptual model to evaluate land subsidence. A significant decline in the groundwater level in this area was noted from 2006 to 2016. The decline in the water level correlates with the major drought events along the Gulf Coast reported in earlier studies. These results are further corroborated by the emerging hotspot analysis performed on the groundwater data. This analysis divides the study area into intensifying, sporadic, and persistent hotspots in the northwest region and intensifying, persistent coldspots in the southeast region of Victoria County. Hydrocarbon production data show high oil and gas extraction from 2017 to 2021. There are a higher number of hydrocarbon production wells in the central and southern regions of the County than elsewhere. The conceptual models relate these events and suggest the existence of subsidence in the County, through which the water and hydrocarbon reservoirs in the study area may lose their reservoir characteristics due to sediment compaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.