<abstract>
<p>Intuitionistic fuzzy hypersoft set is an extension of the intuitionistic fuzzy soft set used to express insufficient evaluation, uncertainty, and anxiety in decision-making. It is a new technique to realize computational intelligence and decision-making under uncertain conditions. The intuitionistic fuzzy hypersoft set can deal with uncertain and fuzzy information more effectively. The concepts and properties of the correlation coefficient and the weighted correlation coefficient of the intuitionistic fuzzy hypersoft sets are proposed in the following research. A prioritization technique for order preference by similarity to ideal solution (TOPSIS) based on correlation coefficients and weighted correlation coefficients is introduced under the intuitionistic fuzzy hypersoft sets. We also introduced aggregation operators, such as intuitionistic fuzzy hypersoft weighted average and intuitionistic fuzzy hypersoft weighted geometric operators. Based on the established TOPSIS method and aggregation operators, the decision-making algorithm is proposed under an intuitionistic fuzzy hypersoft environment to resolve uncertain and confusing information. A case study on decision-making difficulties proves the application of the proposed algorithm. Finally, a comparative analysis with the advantages, effectiveness, flexibility, and numerous existing studies demonstrates this method's effectiveness.</p>
</abstract>
Hypersoft set is an extension of soft set as it further partitions each attribute into its corresponding attribute-valued set. This structure is more flexible and useful as it addresses the limitation of soft set for dealing with the scenarios having disjoint attribute-valued sets corresponding to distinct attributes. The main purpose of this study is to make the existing literature regarding neutrosophic parameterized soft set in line with the need of multi-attribute approximate function. Firstly, we conceptualize the neutrosophic parameterized hypersoft sets under the settings of fuzzy set, intuitionistic fuzzy set and neutrosophic set along with some of their elementary properties and set theoretic operations. Secondly, we propose decision-making-based algorithms with the help of these theories. Moreover, illustrative examples are presented which depict the structural validity for successful application to the problems involving vagueness and uncertainties. Lastly, the generalization of the proposed structure is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.