Abstract-The capabilities of an Enterprise ResourcePlanning (ERP) system to integrate all the business functions needed in a single system with a shared database efficiently and effectively has persuaded organizations to adopt them. In enterprise environment, successful ERP implementation has played a vital role for organizational efficiency. In this respect critical success factors (CSFs) have been identified essential for the successful ERP implementation. The purpose of this paper is to identify and analyze CSFs impacting ERP implementation success in Pakistani Small and Medium Sized Enterprises (SMEs). This paper will help Pakistani SME's on how to obtain better results from ERP implementation focusing on CSFs relevant to them.
Abstract-Existing systems for 3D reconstruction from multiple view video use controlled indoor environments with uniform illumination and backgrounds to allow accurate segmentation of dynamic foreground objects. In this paper we present a portable system for 3D reconstruction of dynamic outdoor scenes which require relatively large capture volumes with complex backgrounds and non-uniform illumination. This is motivated by the demand for 3D reconstruction of natural outdoor scenes to support film and broadcast production. Limitations of existing multiple view 3D reconstruction techniques for use in outdoor scenes are identified. Outdoor 3D scene reconstruction is performed in three stages: (1) 3D background scene modelling using spherical stereo image capture; (2) multiple view segmentation of dynamic foreground objects by simultaneous video matting across multiple views; and (3) robust 3D foreground reconstruction and multiple view segmentation refinement in the presence of segmentation and calibration errors. Evaluation is performed on several outdoor productions with complex dynamic scenes including people and animals. Results demonstrate that the proposed approach overcomes limitations of previous indoor multiple view reconstruction approaches enabling high-quality free-viewpoint rendering and 3D reference models for production.
In computer vision, matting is the process of accurate foreground estimation in images and videos. In this paper we presents a novel patch based approach to video matting relying on non-parametric statistics to represent image variations in appearance. This overcomes the limitation of parametric algorithms which only rely on strong colour correlation between the nearby pixels. Initially we construct a clean background by utilising the foreground object's movement across the background. For a given frame, a trimap is constructed using the background and the last frame's trimap. A patch-based approach is used to estimate the foreground colour for every unknown pixel and finally the alpha matte is extracted. Quantitative evaluation shows that the technique performs better, in terms of the accuracy and the required user interaction, than the current state-of-the-art parametric approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.