Oil and gas construction projects are critical for meeting global demand for fossil fuels, but they also present unique risks and challenges that require innovative construction approaches. Artificial Intelligence (AI) has emerged as a promising technology for tackling these challenges, and this study examines its applications for sustainable development in the oil and gas industry. Using a systematic literature review (SLR), this research evaluates research trends from 2011 to 2022. It provides a detailed analysis of how AI suits oil and gas construction. A total of 115 research articles were reviewed to identify original contributions, and the findings indicate a positive trend in AI research related to oil and gas construction projects, especially after 2016. The originality of this study lies in its comprehensive analysis of the latest research on AI applications in the oil and gas industry and its contribution to developing recommendations for improving the sustainability of oil and gas projects. This research’s originality is in providing insight into the most promising AI applications and methodologies that can help drive sustainable development in the oil and gas industry.
This research dealt with the impact of the quality of the water source on the mechanical properties of construction materials. The mechanical properties of construction materials include compressive, tensile, and flexural strength. Water samples were collected from different resources, these samples were then synthetically investigated to identify and compare their quality parameters. After a detailed chemical analysis of water samples from three sources-wastewater, surface or canal water, and ground water-construction concrete material samples were prepared. The construction materials were developed with the same water-cement ratio, i.e., 0.60 for each concrete mix sample at two mix ratios-M1 (1:2:4) and M2 (1:1.5:3). Slump cone and compacting factor tests were conducted on the fresh concrete to determine its workability prior to its hardening. Then, at 7, 14, 21, and 28 days for each mix, tests for mechanical properties were carried out to determine the compressive, tensile, and flexure strengths. Results showed that the mechanical properties of the concrete made by utilizing wastewater and surface water were more noteworthy as compared to the concrete made by groundwater. This study will help in the production of concrete which depends on waste and surface canal water, even for large projects like rigid pavement construction and water-related structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.