Penjadwalan mata pelajaran pada sekolah-sekolah saat ini masih dilakukan secara manual tanpa melibatkan proses komputasi sehingga kurang efektif karena parameter penyusun dan batasannya tentu sangat banyak, seperti waktu yang tersedia baik itu hari dan jam mengajar, ruangan, dan ketersediaan tenaga pengajar. Proses penjadwalan di SMAN 5 Mataram masih diolah secara manual dengan hanya menggunakan Excel, tentunya akan sangat memakan banyak waktu sehingga resiko kesalahan saat penyusunan dan hasilnya akan sangat tinggi. Dengan melihat permasalahan yang ada maka dibutuhkan suatu sistem informasi penjadwalan untuk meminimalkan kesalahan-kesalahan yang ada. Sistem informasi penjadwalan ini dibuat dengan suatu algoritma yang bernama algoritma genetika dan salah satu framework PHP yaitu Codeigniter yang sudah menyiapkan berbagai macam library untuk dapat mempermudah dalam pengembangan. Algoritma genetika merupakan salah satu solusi yang bisa digunakan untuk menyelesaikan permasalahan tersebut dimana algoritma ini didasarkan atas mekanisme dari seleksi alam yang dikenal dengan proses evolusi biologis seperti seleksi alam, pindah silang dan mutasi. Penerapan algoritma ini akan menghemat waktu dan meminimalisir kesalahan yang akan muncul saat proses penyusunan.
SMS Spam is an unsolicited or unwanted text message by a user that is sent to a mobile device. At this time, increasingly criminal acts can annoy recipients by spreading unsolicited or unwanted spam SMS, including promotions, fraud, pornographic messages, and others. Therefore, the classification of SMS needs to be developed to assist in categorizing SMS. In existing research, to try to overcome these problems, the term frequency-inverse document frequency (TF-IDF) feature is applied. However, this method has a disadvantage, namely eliminating category information on each document, so in this study, a comparison will be made with the Supervised Term Weighting feature method, which is one of the terms frequency relevance frequency (TF-RF) using the Support Vector Machine, K-nearest Neighbor, and Multinomial Naïve Bayes. The total data used is 500 SMS with a comparison of 325 non-spam SMS and 175 spam SMS. After the experiment is conducted, SVM Kernel Sigmoid has the highest average accuracy value where the difference in average accuracy with Kernel RBF is 2.26%, Linear Kernel is 0.09%, k-Nearest Neighbor is 27.56%, and Multinomial Naïve Bayes is 4.37%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.