In this paper, we perform a threshold analysis of braided convolutional codes (BCCs) on the additive white Gaussian noise (AWGN) channel. The decoding thresholds are estimated by Monte-Carlo density evolution (MC-DE) techniques and compared with approximate thresholds from an erasure channel prediction. The results show that, with spatial coupling, the predicted thresholds are very accurate and quickly approach capacity if the coupling memory is increased. For uncoupled ensembles with random puncturing, the prediction can be improved with help of the AWGN threshold of the unpunctured ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.