Oral cancer is a dangerous and extensive cancer with a high death ratio. Oral cancer is the most usual cancer in the world, with more than 300,335 deaths every year. The cancerous tumor appears in the neck, oral glands, face, and mouth. To overcome this dangerous cancer, there are many ways to detect like a biopsy, in which small chunks of tissues are taken from the mouth and tested under a secure and hygienic microscope. However, microscope results of tissues to detect oral cancer are not up to the mark, a microscope cannot easily identify the cancerous cells and normal cells. Detection of cancerous cells using microscopic biopsy images helps in allaying and predicting the issues and gives better results if biologically approaches apply accurately for the prediction of cancerous cells, but during the physical examinations microscopic biopsy images for cancer detection there are major chances for human error and mistake. So, with the development of technology deep learning algorithms plays a major role in medical image diagnosing. Deep learning algorithms are efficiently developed to predict breast cancer, oral cancer, lung cancer, or any other type of medical image. In this study, the proposed model of transfer learning model using AlexNet in the convolutional neural network to extract rank features from oral squamous cell carcinoma (OSCC) biopsy images to train the model. Simulation results have shown that the proposed model achieved higher classification accuracy 97.66% and 90.06% of training and testing, respectively.
Fatal diseases like cancer, dementia, and diabetes are very dangerous. This leads to fear of death if these are not diagnosed at early stages. Computer science uses biomedical studies to diagnose cancer, dementia, and diabetes. With the advancement of machine learning, there are various techniques which are accessible to predict and prognosis these diseases based on different datasets. These datasets varied (image datasets and CSV datasets) around the world. So, there is a need for some machine learning classifiers to predict cancer, dementia, and diabetes in a human. In this paper, we used a multifactorial genetic inheritance disorder dataset to predict cancer, dementia, and diabetes. Several studies used different machine learning classifiers to predict cancer, dementia, and diabetes separately with the help of different types of datasets. So, in this paper, multiclass classification proposed methodology used support vector machine (SVM) and K-nearest neighbor (KNN) machine learning techniques to predict three diseases and compared these techniques based on accuracy. Simulation results have shown that the proposed model of SVM and KNN for prediction of dementia, cancer, and diabetes from multifactorial genetic inheritance disorder achieved 92.8% and 92.5%, 92.8% and 91.2% accuracy during training and testing, respectively. So, it is observed that proposed SVM-based dementia, cancer, and diabetes from multifactorial genetic inheritance disorder prediction (MGIDP) give attractive results as compared with the proposed model of KNN. The application of the proposed model helps to prognosis and prediction of cancer, dementia, and diabetes before time and plays a vital role to minimize the death ratio around the world.
Bone tumors, such as osteosarcomas, can occur anywhere in the bones, though they usually occur in the extremities of long bones near metaphyseal growth plates. Osteosarcoma is a malignant lesion caused by a malignant osteoid growing from primitive mesenchymal cells. In most cases, osteosarcoma develops as a solitary lesion within the most rapidly growing areas of the long bones in children. The distal femur, proximal tibia, and proximal humerus are the most frequently affected bones, but virtually any bone can be affected. Early detection can reduce mortality rates. Osteosarcoma’s manual detection requires expertise, and it can be tedious. With the assistance of modern technology, medical images can now be analyzed and classified automatically, which enables faster and more efficient data processing. A deep learning-based automatic detection system based on whole slide images (WSIs) is presented in this paper to detect osteosarcoma automatically. Experiments conducted on a large dataset of WSIs yielded up to 99.3% accuracy. This model ensures the privacy and integrity of patient information with the implementation of blockchain technology. Utilizing edge computing and fog computing technologies, the model reduces the load on centralized servers and improves efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.