Cancer accounts for a huge mortality rate due to its aggressiveness, colossal potential of metastasis, and heterogeneity (causing resistance against chemotherapy). Lung and colon cancers are among the most prevalent types of cancer around the globe that can occur in both males and females. Early and accurate diagnosis of these cancers can substantially improve the quality of treatment as well as the survival rate of cancer patients. We propose a highly accurate and computationally efficient model for the swift and accurate diagnosis of lung and colon cancers as an alternative to current cancer detection methods. In this study, a large dataset of lung and colon histopathology images was employed for training and the validation process. The dataset is comprised of 25000 histopathology images of lung and colon tissues equally divided into 5 classes. A pretrained neural network (AlexNet) was tuned by modifying the four of its layers before training it on the dataset. Initial classification results were promising for all classes of images except for one class with an overall accuracy of 89%. To improve the overall accuracy and keep the model computationally efficient, instead of implementing image enhancement techniques on the entire dataset, the quality of images of the underperforming class was improved by applying a contrast enhancement technique which is fairly simple and efficient. The implementation of the proposed methodology has not only improved the overall accuracy from 89% to 98.4% but has also proved computationally efficient.
Bone tumors, such as osteosarcomas, can occur anywhere in the bones, though they usually occur in the extremities of long bones near metaphyseal growth plates. Osteosarcoma is a malignant lesion caused by a malignant osteoid growing from primitive mesenchymal cells. In most cases, osteosarcoma develops as a solitary lesion within the most rapidly growing areas of the long bones in children. The distal femur, proximal tibia, and proximal humerus are the most frequently affected bones, but virtually any bone can be affected. Early detection can reduce mortality rates. Osteosarcoma’s manual detection requires expertise, and it can be tedious. With the assistance of modern technology, medical images can now be analyzed and classified automatically, which enables faster and more efficient data processing. A deep learning-based automatic detection system based on whole slide images (WSIs) is presented in this paper to detect osteosarcoma automatically. Experiments conducted on a large dataset of WSIs yielded up to 99.3% accuracy. This model ensures the privacy and integrity of patient information with the implementation of blockchain technology. Utilizing edge computing and fog computing technologies, the model reduces the load on centralized servers and improves efficiency.
Education sector has witnessed several changes in the recent past. These changes have forced private universities into fierce competition with each other to get more students enrolled. This competition has resulted in the adoption of marketing practices by private universities similar to commercial brands. To get competitive gain, universities must observe and examine the students' feedback on their own social media sites along with the social media sites of their competitors. This study presents a novel framework which integrates numerous analytical approaches including statistical analysis, sentiment analysis, and text mining to accomplish a competitive analysis of social media sites of the universities. These techniques enable local universities to utilize social media for the identification of the most-discussed topics by students as well as based on the most unfavorable comments received, major areas for improvement. A comprehensive case study was conducted utilizing the proposed framework for competitive analysis of few top ranked international universities as well as local private universities in Lahore Pakistan. Experimental results show that diversity of shared content, frequency of posts, and schedule of updates, are the key areas for improvement for the local universities. Based on the competitive intelligence gained several recommendations are included in this paper that would enable local universities generally and Riphah international university (RIU) Lahore specifically to promote their brand and increase their attractiveness for potential students using social media and launch successful marketing campaigns targeting a large number of audiences at significantly reduced cost resulting in an increased number of enrolments.
A major and essential issue in biomedical research is to predict genome disorder. Genome disorders cause multivariate diseases like cancer, dementia, diabetes, cystic fibrosis, leigh syndrome, etc. which are causes of high mortality rates around the world. In past, theoretical and explanatory-based approaches were introduced to predict genome disorder. With the development of technology, genetic data were improved to cover almost genome and protein then machine and deep learning-based approaches were introduced to predict genome disorder. Parallel machine and deep learning approaches were introduced. In past, many types of research were conducted on genome disorder prediction using supervised, unsupervised, and semi-supervised learning techniques, most of the approaches using binary problem prediction using genetic sequence data. The prediction results of these approaches were uncertain because of their lower accuracy rate and binary class prediction techniques using genome sequence data but not genome disorder patients' data with his/her history. Most of the techniques used Ribonucleic acid (RNA) gene sequence and were not often capable of handling bid data effectively. Consequently, in this study, the AlexNet as an effective convolutional neural network architecture proposed to develop an advance genome disorder prediction model (AGDPM) for predicting genome multi classes disorder using a large amount of data. AGDPM tested and compare with the pre-trained AlexNet neural network model and AGDPM gives the best results with 89.89% & 81.25% accuracy of training and testing respectively. So, the advance genome disorder prediction model shows the ability to efficiently predict genome disorder and can process a large amount of patients' genome disorder data with a multi-class prediction method. AGDPM has proved that it is capable to predict single gene inheritance disorder, mitochondrial gene inheritance disorder, and multifactorial gene inheritance disorder with respect to various statistical performance parameters. So, with the help of AGDPM biomedical research will be improved in terms to predict genetic disorders and put control on high mortality rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.